Switch to: References

Add citations

You must login to add citations.
  1. Grounding Megethology on Plural Reference.Massimiliano Carrara & Enrico Martino - 2015 - Studia Logica 103 (4):697-711.
    In Mathematics is megethology Lewis reconstructs set theory combining mereology with plural quantification. He introduces megethology, a powerful framework in which one can formulate strong assumptions about the size of the universe of individuals. Within this framework, Lewis develops a structuralist class theory, in which the role of classes is played by individuals. Thus, if mereology and plural quantification are ontologically innocent, as Lewis maintains, he achieves an ontological reduction of classes to individuals. Lewis’work is very attractive. However, the alleged (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the Infinite in Mereology with Plural Quantification.Massimiliano Carrara & Enrico Martino - 2011 - Review of Symbolic Logic 4 (1):54-62.
    In Lewis reconstructs set theory using mereology and plural quantification (MPQ). In his recontruction he assumes from the beginning that there is an infinite plurality of atoms, whose size is equivalent to that of the set theoretical universe. Since this assumption is far beyond the basic axioms of mereology, it might seem that MPQ do not play any role in order to guarantee the existence of a large infinity of objects. However, we intend to demonstrate that mereology and plural quantification (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Meghetologia.Massimiliano Carrara & Filippo Mancini - 2020 - Aphex. Portale Italiano di Filosofia Analitica 21 (1):1-49.
    Megethology is the second-order theory of the part-whole relation developed by David Lewis, and it is obtained by combining plural quantification with classical extensional mereology. It can express some hypotheses about the size of the domain such as that there are inaccessibly many atoms. This will prove enough to get the orthodox set theory. Then, megethology is a possible foundation for mathematics. This paper is an introduction to megethology.
    Download  
     
    Export citation  
     
    Bookmark  
  • "Possible definitions of an 'a priori' granule in general rough set theory" by A. Mani.Mani A. - unknown
    We introduce an abstract framework for general rough set theory from a mereological perspective and consider possible concepts of ’a priori’ granules and granulation in the same. The framework is ideal for relaxing many of the relatively superfluous set-theoretic axioms and for improving the semantics of many relation based, cover-based and dialectical rough set theories. This is a relatively simplified presentation of a section in three different recent research papers by the present author.
    Download  
     
    Export citation  
     
    Bookmark