Switch to: References

Add citations

You must login to add citations.
  1. Reverse mathematics and properties of finite character.Damir D. Dzhafarov & Carl Mummert - 2012 - Annals of Pure and Applied Logic 163 (9):1243-1251.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quasi-Polish spaces.Matthew de Brecht - 2013 - Annals of Pure and Applied Logic 164 (3):356-381.
    We investigate some basic descriptive set theory for countably based completely quasi-metrizable topological spaces, which we refer to as quasi-Polish spaces. These spaces naturally generalize much of the classical descriptive set theory of Polish spaces to the non-Hausdorff setting. We show that a subspace of a quasi-Polish space is quasi-Polish if and only if it is Π20 source in the Borel hierarchy. Quasi-Polish spaces can be characterized within the framework of Type-2 Theory of Effectivity as precisely the countably based spaces (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Filters on Computable Posets.Steffen Lempp & Carl Mummert - 2006 - Notre Dame Journal of Formal Logic 47 (4):479-485.
    We explore the problem of constructing maximal and unbounded filters on computable posets. We obtain both computability results and reverse mathematics results. A maximal filter is one that does not extend to a larger filter. We show that every computable poset has a \Delta^0_2 maximal filter, and there is a computable poset with no \Pi^0_1 or \Sigma^0_1 maximal filter. There is a computable poset on which every maximal filter is Turing complete. We obtain the reverse mathematics result that the principle (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Reverse Mathematics of Topology: Dimension, Paracompactness, and Splittings.Sam Sanders - 2020 - Notre Dame Journal of Formal Logic 61 (4):537-559.
    Reverse mathematics is a program in the foundations of mathematics founded by Friedman and developed extensively by Simpson and others. The aim of RM is to find the minimal axioms needed to prove a theorem of ordinary, that is, non-set-theoretic, mathematics. As suggested by the title, this paper deals with the study of the topological notions of dimension and paracompactness, inside Kohlenbach’s higher-order RM. As to splittings, there are some examples in RM of theorems A, B, C such that A (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Representations and the Foundations of Mathematics.Sam Sanders - 2022 - Notre Dame Journal of Formal Logic 63 (1):1-28.
    The representation of mathematical objects in terms of (more) basic ones is part and parcel of (the foundations of) mathematics. In the usual foundations of mathematics, namely, ZFC set theory, all mathematical objects are represented by sets, while ordinary, namely, non–set theoretic, mathematics is represented in the more parsimonious language of second-order arithmetic. This paper deals with the latter representation for the rather basic case of continuous functions on the reals and Baire space. We show that the logical strength of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the mathematical and foundational significance of the uncountable.Dag Normann & Sam Sanders - 2019 - Journal of Mathematical Logic 19 (1):1950001.
    We study the logical and computational properties of basic theorems of uncountable mathematics, including the Cousin and Lindelöf lemma published in 1895 and 1903. Historically, these lemmas were among the first formulations of open-cover compactness and the Lindelöf property, respectively. These notions are of great conceptual importance: the former is commonly viewed as a way of treating uncountable sets like e.g. [Formula: see text] as “almost finite”, while the latter allows one to treat uncountable sets like e.g. [Formula: see text] (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On Robust Theorems Due to Bolzano, Weierstrass, Jordan, and Cantor.Dag Normann & Sam Sanders - forthcoming - Journal of Symbolic Logic:1-51.
    Reverse Mathematics (RM hereafter) is a program in the foundations of mathematics where the aim is to identify theminimalaxioms needed to prove a given theorem from ordinary, i.e., non-set theoretic, mathematics. This program has unveiled surprising regularities: the minimal axioms are very oftenequivalentto the theorem over thebase theory, a weak system of ‘computable mathematics’, while most theorems are either provable in this base theory, or equivalent to one of onlyfourlogical systems. The latter plus the base theory are called the ‘Big (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reverse mathematics and π21 comprehension.Carl Mummert & Stephen G. Simpson - 2005 - Bulletin of Symbolic Logic 11 (4):526-533.
    We initiate the reverse mathematics of general topology. We show that a certain metrization theorem is equivalent to Π2 1 comprehension. An MF space is defined to be a topological space of the form MF(P) with the topology generated by $\lbrace N_p \mid p \in P \rbrace$ . Here P is a poset, MF(P) is the set of maximal filters on P, and $N_p = \lbrace F \in MF(P) \mid p \in F \rbrace$ . If the poset P is countable, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • $${\Pi^1_2}$$ -comprehension and the property of Ramsey.Christoph Heinatsch - 2009 - Archive for Mathematical Logic 48 (3-4):323-386.
    We show that a theory of autonomous iterated Ramseyness based on second order arithmetic (SOA) is proof-theoretically equivalent to ${\Pi^1_2}$ -comprehension. The property of Ramsey is defined as follows. Let X be a set of real numbers, i.e. a set of infinite sets of natural numbers. We call a set H of natural numbers homogeneous for X if either all infinite subsets of H are in X or all infinite subsets of H are not in X. X has the property (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reverse mathematics, well-quasi-orders, and Noetherian spaces.Emanuele Frittaion, Matthew Hendtlass, Alberto Marcone, Paul Shafer & Jeroen Van der Meeren - 2016 - Archive for Mathematical Logic 55 (3):431-459.
    A quasi-order Q induces two natural quasi-orders on $${\mathcal{P}(Q)}$$, but if Q is a well-quasi-order, then these quasi-orders need not necessarily be well-quasi-orders. Nevertheless, Goubault-Larrecq (Proceedings of the 22nd Annual IEEE Symposium 4 on Logic in Computer Science (LICS’07), pp. 453–462, 2007) showed that moving from a well-quasi-order Q to the quasi-orders on $${\mathcal{P}(Q)}$$ preserves well-quasi-orderedness in a topological sense. Specifically, Goubault-Larrecq proved that the upper topologies of the induced quasi-orders on $${\mathcal{P}(Q)}$$ are Noetherian, which means that they contain no (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation