Switch to: References

Add citations

You must login to add citations.
  1. On Categorical Equivalence of Weak Monadic Residuated Distributive Lattices and Weak Monadic c-Differential Residuated Distributive Lattices.Jun Tao Wang, Yan Hong She, Peng Fei He & Na Na Ma - 2023 - Studia Logica 111 (3):361-390.
    The category \(\mathbb {DRDL}{'}\), whose objects are c-differential residuated distributive lattices satisfying the condition \(\textbf{CK}\), is the image of the category \(\mathbb {RDL}\), whose objects are residuated distributive lattices, under the categorical equivalence \(\textbf{K}\) that is constructed in Castiglioni et al. (Stud Log 90:93–124, 2008). In this paper, we introduce weak monadic residuated lattices and study some of their subvarieties. In particular, we use the functor \(\textbf{K}\) to relate the category \(\mathbb {WMRDL}\), whose objects are weak monadic residuated distributive lattices, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Kalman’s functor for bounded hemi-implicative semilattices and hemi-implicative lattices.Ramon Jansana & Hernán Javier San Martín - 2018 - Logic Journal of the IGPL 26 (1):47-82.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The logic Ł•.Marta S. Sagastume & Hernán J. San Martín - 2014 - Mathematical Logic Quarterly 60 (6):375-388.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)A Categorical Equivalence Motivated by Kalman’s Construction.Marta S. Sagastume & Hernán J. San Martín - 2016 - Studia Logica 104 (2):185-208.
    An equivalence between the category of MV-algebras and the category \ is given in Castiglioni et al. :67–92, 2014). An integral residuated lattice with bottom is an MV-algebra if and only if it satisfies the equations \ \vee = 1}\) and \ = a \wedge b}\). An object of \ is a residuated lattice which in particular satisfies some equations which correspond to the previous equations. In this paper we extend the equivalence to the category whose objects are pairs, where (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)A Categorical Equivalence Motivated by Kalman’s Construction.Hernán J. San Martín & Marta S. Sagastume - 2016 - Studia Logica 104 (2):185-208.
    An equivalence between the category of MV-algebras and the category $${{\rm MV^{\bullet}}}$$ MV ∙ is given in Castiglioni et al. :67–92, 2014). An integral residuated lattice with bottom is an MV-algebra if and only if it satisfies the equations $${a = \neg \neg a, \vee = 1}$$ a = ¬ ¬ a, ∨ = 1 and $${a \odot = a \wedge b}$$ a ⊙ = a ∧ b. An object of $${{\rm MV^{\bullet}}}$$ MV ∙ is a residuated lattice which in (...)
    Download  
     
    Export citation  
     
    Bookmark