Switch to: References

Add citations

You must login to add citations.
  1. Identity and individuality in quantum theory.Steven French - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Entanglement and indistinguishability in a quantum ontology of properties.Sebastian Fortin & Olimpia Lombardi - 2022 - Studies in History and Philosophy of Science Part A 91 (C):234-243.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)A pragmatist view of the metaphysics of entanglement.Richard Healey - 2016 - Synthese:1-38.
    Quantum entanglement is widely believed to be a feature of physical reality with undoubted metaphysical implications. But Schrödinger introduced entanglement as a theoretical relation between representatives of the quantum states of two systems. Entanglement represents a physical relation only if quantum states are elements of physical reality. So arguments for metaphysical holism or nonseparability from entanglement rest on a questionable view of quantum theory. Assignment of entangled quantum states predicts experimentally confirmed violation of Bell inequalities. Can one use these experimental (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)A pragmatist view of the metaphysics of entanglement.Richard Healey - 2020 - Synthese 197 (10):4265-4302.
    Quantum entanglement is widely believed to be a feature of physical reality with undoubted (though debated) metaphysical implications. But Schrödinger introduced entanglement as a theoretical relation between representatives of the quantum states of two systems. Entanglement represents a physical relation only if quantum states are elements of physical reality. So arguments for metaphysical holism or nonseparability from entanglement rest on a questionable view of quantum theory. Assignment of entangled quantum states predicts experimentally confirmed violation of Bell inequalities. Can one use (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)The Case Against Factorism: On the Labels of $$\otimes$$-Factor Hilbert-Spaces of Similar Particles in Quantum Mechanics.F. A. Muller & Gijs Leegwater - 2022 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 53 (3):291-306.
    We discuss the case against Factorism, which is the standard assumption in quantum mechanics that the labels of the $$\otimes$$ ⊗ -factor Hilbert-spaces in direct-product Hilbert-spaces of composite physical systems of similar particles refer to particles, either directly or descriptively. We distinguish different versions of Factorism and argue for their truth or falsehood. In particular, by introducing the concepts of snapshot Hilbert-space and Schrödinger-movie, we demonstrate that there are Hilbert-spaces and $$\otimes$$ ⊗ -factorisations where the labels do refer, even descriptively, (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)The Case Against Factorism: On the Labels of ⊗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\otimes$$\end{document}-Factor Hilbert-Spaces of Similar Particles in Quantum Mechanics. [REVIEW]Gijs Leegwater & F. A. Muller - 2020 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 53 (3):291-306.
    We discuss the case against Factorism, which is the standard assumption in quantum mechanics that the labels of the ⊗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\otimes$$\end{document}-factor Hilbert-spaces in direct-product Hilbert-spaces of composite physical systems of similar particles refer to particles, either directly or descriptively. We distinguish different versions of Factorism and argue for their truth or falsehood. In particular, by introducing the concepts of snapshot Hilbert-space and Schrödinger-movie, we demonstrate that there are Hilbert-spaces and ⊗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations