Switch to: References

Add citations

You must login to add citations.
  1. A Lopez-Escobar Theorem for Continuous Domains.Nikolay Bazhenov, Ekaterina Fokina, Dino Rossegger, Alexandra Soskova & Stefan Vatev - forthcoming - Journal of Symbolic Logic:1-18.
    We prove an effective version of the Lopez-Escobar theorem for continuous domains. Let $Mod(\tau )$ be the set of countable structures with universe $\omega $ in vocabulary $\tau $ topologized by the Scott topology. We show that an invariant set $X\subseteq Mod(\tau )$ is $\Pi ^0_\alpha $ in the Borel hierarchy of this topology if and only if it is definable by a $\Pi ^p_\alpha $ -formula, a positive $\Pi ^0_\alpha $ formula in the infinitary logic $L_{\omega _1\omega }$. As (...)
    Download  
     
    Export citation  
     
    Bookmark