Switch to: References

Add citations

You must login to add citations.
  1. Katětov Order on Mad Families.Osvaldo Guzmán - 2024 - Journal of Symbolic Logic 89 (2):794-828.
    We continue with the study of the Katětov order on MAD families. We prove that Katětov maximal MAD families exist under $\mathfrak {b=c}$ and that there are no Katětov-top MAD families assuming $\mathfrak {s\leq b}.$ This improves previously known results from the literature. We also answer a problem form Arciga, Hrušák, and Martínez regarding Katětov maximal MAD families.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Maximal almost disjoint families, determinacy, and forcing.Karen Bakke Haga, David Schrittesser & Asger Törnquist - 2022 - Journal of Mathematical Logic 22 (1):2150026.
    We study the notion of [Formula: see text]-MAD families where [Formula: see text] is a Borel ideal on [Formula: see text]. We show that if [Formula: see text] is any finite or countably iterated Fubini product of the ideal of finite sets [Formula: see text], then there are no analytic infinite [Formula: see text]-MAD families, and assuming Projective Determinacy and Dependent Choice there are no infinite projective [Formula: see text]-MAD families; and under the full Axiom of Determinacy [Formula: see text][Formula: (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Maximal almost disjoint families, determinacy, and forcing.Karen Bakke Haga, David Schrittesser & Asger Törnquist - 2021 - Journal of Mathematical Logic 22 (1).
    We study the notion of ????-MAD families where ???? is a Borel ideal on ω. We show that if ???? is any finite or countably iterated Fubini product of the ideal of finite sets Fin, then there are no analytic...
    Download  
     
    Export citation  
     
    Bookmark  
  • On well-splitting posets.Dušan Repovš & Lyubomyr Zdomskyy - 2022 - Archive for Mathematical Logic 61 (7):995-1005.
    We introduce a class of proper posets which is preserved under countable support iterations, includes \(\omega ^\omega \) -bounding, Cohen, Miller, and Mathias posets associated to filters with the Hurewicz covering properties, and has the property that the ground model reals remain splitting and unbounded in corresponding extensions. Our results may be considered as a possible path towards solving variations of the famous Roitman problem.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the structure of Borel ideals in-between the ideals ED and Fin ⊗ Fin in the Katětov order.Pratulananda Das, Rafał Filipów, Szymon Gła̧b & Jacek Tryba - 2021 - Annals of Pure and Applied Logic 172 (8):102976.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ideals and Their Generic Ultrafilters.David Chodounský & Jindřich Zapletal - 2020 - Notre Dame Journal of Formal Logic 61 (3):403-408.
    Let I be an F σ -ideal on natural numbers. We characterize the ultrafilters which are generic over the model L for the poset of I -positive sets of natural numbers ordered by inclusion.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Products of hurewicz spaces in the Laver model.Dušan Repovš & Lyubomyr Zdomskyy - 2017 - Bulletin of Symbolic Logic 23 (3):324-333.
    This article is devoted to the interplay between forcing with fusion and combinatorial covering properties. We illustrate this interplay by proving that in the Laver model for the consistency of the Borel’s conjecture, the product of any two metrizable spaces with the Hurewicz property has the Menger property.
    Download  
     
    Export citation  
     
    Bookmark   3 citations