Switch to: References

Add citations

You must login to add citations.
  1. 1-Generic splittings of computably enumerable degrees.Guohua Wu - 2006 - Annals of Pure and Applied Logic 138 (1):211-219.
    Say a set Gω is 1-generic if for any eω, there is a string σG such that {e}σ↓ or τσ↑). It is known that can be split into two 1-generic degrees. In this paper, we generalize this and prove that any nonzero computably enumerable degree can be split into two 1-generic degrees. As a corollary, no two computably enumerable degrees bound the same class of 1-generic degrees.
    Download  
     
    Export citation  
     
    Bookmark  
  • A 1-generic degree with a strong minimal cover.Masahiro Kumabe - 2000 - Journal of Symbolic Logic 65 (3):1395-1442.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Dynamic notions of genericity and array noncomputability.Benjamin Schaeffer - 1998 - Annals of Pure and Applied Logic 95 (1-3):37-69.
    We examine notions of genericity intermediate between 1-genericity and 2-genericity, especially in relation to the Δ20 degrees. We define a new kind of genericity, dynamic genericity, and prove that it is stronger than pb-genericity. Specifically, we show there is a Δ20 pb-generic degree below which the pb-generic degrees fail to be downward dense and that pb-generic degrees are downward dense below every dynamically generic degree. To do so, we examine the relation between genericity and array noncomputability, deriving some structural information (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Arithmetical Sacks Forcing.Rod Downey & Liang Yu - 2006 - Archive for Mathematical Logic 45 (6):715-720.
    We answer a question of Jockusch by constructing a hyperimmune-free minimal degree below a 1-generic one. To do this we introduce a new forcing notion called arithmetical Sacks forcing. Some other applications are presented.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Embedding and Coding below a 1-Generic Degree.Noam Greenberg & Antonio Montalbán - 2003 - Notre Dame Journal of Formal Logic 44 (4):200-216.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Almost weakly 2-generic sets.Stephen A. Fenner - 1994 - Journal of Symbolic Logic 59 (3):868-887.
    There is a family of questions in relativized complexity theory--weak analogs of the Friedberg Jump-Inversion Theorem--that are resolved by 1-generic sets but which cannot be resolved by essentially any weaker notion of genericity. This paper defines aw2-generic sets. i.e., sets which meet every dense set of strings that is r.e. in some incomplete r.e. set. Aw2-generic sets are very close to 1-generic sets in strength, but are too weak to resolve these questions. In particular, it is shown that for any (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Generic degrees are complemented.Masahiro Kumabe - 1993 - Annals of Pure and Applied Logic 59 (3):257-272.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Separating weak α-change and α-change genericity.Michael McInerney & Keng Meng Ng - 2022 - Annals of Pure and Applied Logic 173 (7):103134.
    Download  
     
    Export citation  
     
    Bookmark  
  • A weakly 2-generic which Bounds a minimal degree.Rodney G. Downey & Satyadev Nandakumar - 2019 - Journal of Symbolic Logic 84 (4):1326-1347.
    Jockusch showed that 2-generic degrees are downward dense below a 2-generic degree. That is, if a is 2-generic, and $0 < {\bf{b}} < {\bf{a}}$, then there is a 2-generic g with $0 < {\bf{g}} < {\bf{b}}.$ In the case of 1-generic degrees Kumabe, and independently Chong and Downey, constructed a minimal degree computable from a 1-generic degree. We explore the tightness of these results.We solve a question of Barmpalias and Lewis-Pye by constructing a minimal degree computable from a weakly 2-generic (...)
    Download  
     
    Export citation  
     
    Bookmark