Switch to: References

Add citations

You must login to add citations.
  1. Idempotent Full Paraconsistent Negations are not Algebraizable.Jean-Yves Béziau - 1998 - Notre Dame Journal of Formal Logic 39 (1):135-139.
    Using methods of abstract logic and the theory of valuation, we prove that there is no paraconsistent negation obeying the law of double negation and such that $\neg(a\wedge\neg a)$ is a theorem which can be algebraized by a technique similar to the Tarski-Lindenbaum technique.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Logics of Formal Inconsistency Enriched with Replacement: An Algebraic and Modal Account.Walter Carnielli, Marcelo E. Coniglio & David Fuenmayor - 2022 - Review of Symbolic Logic 15 (3):771-806.
    One of the most expected properties of a logical system is that it can be algebraizable, in the sense that an algebraic counterpart of the deductive machinery could be found. Since the inception of da Costa's paraconsistent calculi, an algebraic equivalent for such systems have been searched. It is known that these systems are non self-extensional (i.e., they do not satisfy the replacement property). More than this, they are not algebraizable in the sense of Blok-Pigozzi. The same negative results hold (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Enciclopédia de Termos Lógico-Filosóficos.João Miguel Biscaia Branquinho, Desidério Murcho & Nelson Gonçalves Gomes (eds.) - 2006 - São Paulo, SP, Brasil: Martins Fontes.
    Esta enciclopédia abrange, de uma forma introdutória mas desejavelmente rigorosa, uma diversidade de conceitos, temas, problemas, argumentos e teorias localizados numa área relativamente recente de estudos, os quais tem sido habitual qualificar como «estudos lógico-filosóficos». De uma forma apropriadamente genérica, e apesar de o território teórico abrangido ser extenso e de contornos por vezes difusos, podemos dizer que na área se investiga um conjunto de questões fundamentais acerca da natureza da linguagem, da mente, da cognição e do raciocínio humanos, bem (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Dualising Intuitionictic Negation.Graham Priest - 2009 - Principia: An International Journal of Epistemology 13 (2):165-184.
    One of Da Costa’s motives when he constructed the paraconsistent logic C! was to dualise the negation of intuitionistic logic. In this paper I explore a different way of going about this task. A logic is defined by taking the Kripke semantics for intuitionistic logic, and dualising the truth conditions for negation. Various properties of the logic are established, including its relation to C!. Tableau and natural deduction systems for the logic are produced, as are appropriate algebraic structures. The paper (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Paraconsistent Algebras.Walter Alexandre Carnielli & Luiz Paulo de Alcantara - 1984 - Studia Logica 43 (1):79-88.
    The propositional calculi $C_{n}$ , $1\leq n\leq \omega $ introduced by N.C.A. da Costa consitute special kinds of paraconsistent logics. A question which remained open for some time concerned whether it was possible to obtain a Lindenbaum's algebra for $C_{n}$ . C. Mortensen settled the problem, proving that no equivalence relation for $C_{n}$ determines a non-trivial quotient algebra. The concept of da Costa algebra, which reflects most of the logical properties of $C_{n}$ , as well as the concept of paraconsistent (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Replacement in Logic.Lloyd Humberstone - 2013 - Journal of Philosophical Logic 42 (1):49-89.
    We study a range of issues connected with the idea of replacing one formula by another in a fixed context. The replacement core of a consequence relation ⊢ is the relation holding between a set of formulas {A1,..., Am,...} and a formula B when for every context C, we have C,..., C,... ⊢ C. Section 1 looks at some differences between which inferences are lost on passing to the replacement cores of the classical and intuitionistic consequence relations. For example, we (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Paraconsistent algebras.Walter Alexandre Carnielli & Luiz Paulo Alcantara - 1984 - Studia Logica 43 (1-2):79 - 88.
    The prepositional calculiC n , 1 n introduced by N.C.A. da Costa constitute special kinds of paraconsistent logics. A question which remained open for some time concerned whether it was possible to obtain a Lindenbaum''s algebra forC n . C. Mortensen settled the problem, proving that no equivalence relation forC n . determines a non-trivial quotient algebra.The concept of da Costa algebra, which reflects most of the logical properties ofC n , as well as the concept of paraconsistent closure system, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Idealist Origins: 1920s and Before.Martin Davies & Stein Helgeby - 2014 - In Graham Oppy & Nick Trakakis (eds.), History of Philosophy in Australia and New Zealand. Dordrecht: Springer. pp. 15-54.
    This paper explores early Australasian philosophy in some detail. Two approaches have dominated Western philosophy in Australia: idealism and materialism. Idealism was prevalent between the 1880s and the 1930s, but dissipated thereafter. Idealism in Australia often reflected Kantian themes, but it also reflected the revival of interest in Hegel through the work of ‘absolute idealists’ such as T. H. Green, F. H. Bradley, and Henry Jones. A number of the early New Zealand philosophers were also educated in the idealist tradition (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Behavioral algebraization of da Costa's C-systems.Carlos Caleiro & Ricardo Gonçalves - 2009 - Journal of Applied Non-Classical Logics 19 (2):127-148.
    It is well-known that da Costa's C-systems of paraconsistent logic do not admit a Blok-Pigozzi algebraization. Still, an algebraic flavored semantics for them has been proposed in the literature, namely using the class of so-called da Costa algebras. However, the precise connection between these semantic structures and the C-systems was never established at the light of the theory of algebraizable logics. In this paper we propose to study the C-systems from an algebraic point of view, and to fill in this (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Logic may be simple. Logic, congruence and algebra.Jean-Yves Béziau - 1997 - Logic and Logical Philosophy 5:129-147.
    This paper is an attempt to clear some philosophical questions about the nature of logic by setting up a mathematical framework. The notion of congruence in logic is defined. A logical structure in which there is no non-trivial congruence relation, like some paraconsistent logics, is called simple. The relations between simplicity, the replacement theorem and algebraization of logic are studied (including MacLane-Curry’s theorem and a discussion about Curry’s algebras). We also examine how these concepts are related to such notions as (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Idempotent Full Paraconsistent Negations are not Algebraizable.Jean- Yves Beziau - unknown
    1 What are the features of a paraconsistent negation? Since paraconsistent logic was launched by da Costa in his seminal paper [4], one of the fundamental problems has been to determine what exactly are the theoretical or metatheoretical properties of classical negation that can have a unary operator not obeying the principle of noncontradiction, that is, a paraconsistent operator. What the result presented here shows is that some of these properties are not compatible with each other, so that in constructing (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Equivalential and algebraizable logics.Burghard Herrmann - 1996 - Studia Logica 57 (2-3):419 - 436.
    The notion of an algebraizable logic in the sense of Blok and Pigozzi [3] is generalized to that of a possibly infinitely algebraizable, for short, p.i.-algebraizable logic by admitting infinite sets of equivalence formulas and defining equations. An example of the new class is given. Many ideas of this paper have been present in [3] and [4]. By a consequent matrix semantics approach the theory of algebraizable and p.i.-algebraizable logics is developed in a different way. It is related to the (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Fibring non-truth-functional logics: Completeness preservation.C. Caleiro, W. A. Carnielli, M. E. Coniglio, A. Sernadas & C. Sernadas - 2003 - Journal of Logic, Language and Information 12 (2):183-211.
    Fibring has been shown to be useful for combining logics endowed withtruth-functional semantics. However, the techniques used so far are unableto cope with fibring of logics endowed with non-truth-functional semanticsas, for example, paraconsistent logics. The first main contribution of thepaper is the development of a suitable abstract notion of logic, that mayalso encompass systems with non-truth-functional connectives, and wherefibring can still be dealt with. Furthermore, it is shown that thisextended notion of fibring preserves completeness under certain reasonableconditions. This completeness transfer (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Behavioral Algebraization of Logics.Carlos Caleiro, Ricardo Gonçalves & Manuel Martins - 2009 - Studia Logica 91 (1):63-111.
    We introduce and study a new approach to the theory of abstract algebraic logic (AAL) that explores the use of many-sorted behavioral logic in the role traditionally played by unsorted equational logic. Our aim is to extend the range of applicability of AAL toward providing a meaningful algebraic counterpart also to logics with a many-sorted language, and possibly including non-truth-functional connectives. The proposed behavioral approach covers logics which are not algebraizable according to the standard approach, while also bringing a new (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • P1 algebras.Renato A. Lewin, Irene F. Mikenberg & Maria G. Schwarze - 1994 - Studia Logica 53 (1):21 - 28.
    Download  
     
    Export citation  
     
    Bookmark   1 citation