Switch to: References

Add citations

You must login to add citations.
  1. Gentzen’s “cut rule” and quantum measurement in terms of Hilbert arithmetic. Metaphor and understanding modeled formally.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal 14 (14):1-37.
    Hilbert arithmetic in a wide sense, including Hilbert arithmetic in a narrow sense consisting by two dual and anti-isometric Peano arithmetics, on the one hand, and the qubit Hilbert space (originating for the standard separable complex Hilbert space of quantum mechanics), on the other hand, allows for an arithmetic version of Gentzen’s cut elimination and quantum measurement to be described uniformy as two processes occurring accordingly in those two branches. A philosophical reflection also justifying that unity by quantum neo-Pythagoreanism links (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Sentence connectives in formal logic.Lloyd Humberstone - forthcoming - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Sufficient conditions for cut elimination with complexity analysis.João Rasga - 2007 - Annals of Pure and Applied Logic 149 (1-3):81-99.
    Sufficient conditions for first-order-based sequent calculi to admit cut elimination by a Schütte–Tait style cut elimination proof are established. The worst case complexity of the cut elimination is analysed. The obtained upper bound is parameterized by a quantity related to the calculus. The conditions are general enough to be satisfied by a wide class of sequent calculi encompassing, among others, some sequent calculi presentations for the first order and the propositional versions of classical and intuitionistic logic, classical and intuitionistic modal (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • New Consecution Calculi for R→t.Katalin Bimbó & J. Michael Dunn - 2012 - Notre Dame Journal of Formal Logic 53 (4):491-509.
    The implicational fragment of the logic of relevant implication, $R_{\to}$ is one of the oldest relevance logics and in 1959 was shown by Kripke to be decidable. The proof is based on $LR_{\to}$ , a Gentzen-style calculus. In this paper, we add the truth constant $\mathbf{t}$ to $LR_{\to}$ , but more importantly we show how to reshape the sequent calculus as a consecution calculus containing a binary structural connective, in which permutation is replaced by two structural rules that involve $\mathbf{t}$ (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Algebraic proof theory: Hypersequents and hypercompletions.Agata Ciabattoni, Nikolaos Galatos & Kazushige Terui - 2017 - Annals of Pure and Applied Logic 168 (3):693-737.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Algebraic proof theory for substructural logics: cut-elimination and completions.Agata Ciabattoni, Nikolaos Galatos & Kazushige Terui - 2012 - Annals of Pure and Applied Logic 163 (3):266-290.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Rule-Elimination Theorems.Sayantan Roy - 2024 - Logica Universalis 18 (3):355-393.
    Cut-elimination theorems constitute one of the most important classes of theorems of proof theory. Since Gentzen’s proof of the cut-elimination theorem for the system LK, several other proofs have been proposed. Even though the techniques of these proofs can be modified to sequent systems other than $$\textbf{LK}$$, they are essentially of a very particular nature; each of them describes an algorithm to transform a given proof to a cut-free proof. However, due to its reliance on heavy syntactic arguments and case (...)
    Download  
     
    Export citation  
     
    Bookmark