Switch to: References

Add citations

You must login to add citations.
  1. Goodstein sequences for prominent ordinals up to the Bachmann–Howard ordinal.Michiel Smet & Andreas Weiermann - 2012 - Annals of Pure and Applied Logic 163 (6):669-680.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Slow consistency.Sy-David Friedman, Michael Rathjen & Andreas Weiermann - 2013 - Annals of Pure and Applied Logic 164 (3):382-393.
    The fact that “natural” theories, i.e. theories which have something like an “idea” to them, are almost always linearly ordered with regard to logical strength has been called one of the great mysteries of the foundation of mathematics. However, one easily establishes the existence of theories with incomparable logical strengths using self-reference . As a result, PA+Con is not the least theory whose strength is greater than that of PA. But still we can ask: is there a sense in which (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Investigations on slow versus fast growing: How to majorize slow growing functions nontrivially by fast growing ones. [REVIEW]Andreas Weiermann - 1995 - Archive for Mathematical Logic 34 (5):313-330.
    Let T(Ω) be the ordinal notation system from Buchholz-Schütte (1988). [The order type of the countable segmentT(Ω)0 is — by Rathjen (1988) — the proof-theoretic ordinal the proof-theoretic ordinal ofACA 0 + (Π 1 l −TR).] In particular let ↦Ω a denote the enumeration function of the infinite cardinals and leta ↦ ψ0 a denote the partial collapsing operation on T(Ω) which maps ordinals of T(Ω) into the countable segment TΩ 0 of T(Ω). Assume that the (fast growing) extended Grzegorczyk (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Proof theory and ordinal analysis.W. Pohlers - 1991 - Archive for Mathematical Logic 30 (5-6):311-376.
    In the first part we show why ordinals and ordinal notations are naturally connected with proof theoretical research. We introduce the program of ordinal analysis. The second part gives examples of applications of ordinal analysis.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Term rewriting theory for the primitive recursive functions.E. A. Cichon & Andreas Weiermann - 1997 - Annals of Pure and Applied Logic 83 (3):199-223.
    The termination of rewrite systems for parameter recursion, simple nested recursion and unnested multiple recursion is shown by using monotone interpretations both on the ordinals below the first primitive recursively closed ordinal and on the natural numbers. We show that the resulting derivation lengths are primitive recursive. As a corollary we obtain transparent and illuminating proofs of the facts that the schemata of parameter recursion, simple nested recursion and unnested multiple recursion lead from primitive recursive functions to primitive recursive functions.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Goodstein sequences for prominent ordinals up to the Bachmann–Howard ordinal.Michiel De Smet & Andreas Weiermann - 2012 - Annals of Pure and Applied Logic 163 (6):669-680.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Slow versus fast growing.Andreas Weiermann - 2002 - Synthese 133 (1-2):13 - 29.
    We survey a selection of results about majorization hierarchies. The main focus is on classical and recent results about the comparison between the slow and fast growing hierarchies.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • What's so special about Kruskal's theorem and the ordinal Γo? A survey of some results in proof theory.Jean Gallier - 1991 - Annals of Pure and Applied Logic 53 (3):199-260.
    This paper consists primarily of a survey of results of Harvey Friedman about some proof-theoretic aspects of various forms of Kruskal's tree theorem, and in particular the connection with the ordinal Γ0. We also include a fairly extensive treatment of normal functions on the countable ordinals, and we give a glimpse of Verlen hierarchies, some subsystems of second-order logic, slow-growing and fast-growing hierarchies including Girard's result, and Goodstein sequences. The central theme of this paper is a powerful theorem due to (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Goodstein Sequences Based on a Parametrized Ackermann–Péter Function.Toshiyasu Arai, Stanley S. Wainer & Andreas Weiermann - 2021 - Bulletin of Symbolic Logic 27 (2):168-186.
    Following our [6], though with somewhat different methods here, further variants of Goodstein sequences are introduced in terms of parameterized Ackermann–Péter functions. Each of the sequences is shown to terminate, and the proof-theoretic strengths of these facts are calibrated by means of ordinal assignments, yielding independence results for a range of theories: PRA, PA,$\Sigma ^1_1$-DC$_0$, ATR$_0$, up to ID$_1$. The key is the so-called “Hardy hierarchy” of proof-theoretic bounding finctions, providing a uniform method for associating Goodstein-type sequences with parameterized normal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The intrinsic difficulty of recursive functions.F. W. Kroon - 1996 - Studia Logica 56 (3):427 - 454.
    This paper deals with a philosophical question that arises within the theory of computational complexity: how to understand the notion of INTRINSIC complexity or difficulty, as opposed to notions of difficulty that depend on the particular computational model used. The paper uses ideas from Blum's abstract approach to complexity theory to develop an extensional approach to this question. Among other things, it shows how such an approach gives detailed confirmation of the view that subrecursive hierarchies tend to rank functions in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What's so special about Kruskal's theorem and the ordinal Γo? A survey of some results in proof theory.Jean H. Gallier - 1991 - Annals of Pure and Applied Logic 53 (3):199-260.
    This paper consists primarily of a survey of results of Harvey Friedman about some proof-theoretic aspects of various forms of Kruskal's tree theorem, and in particular the connection with the ordinal Γ0. We also include a fairly extensive treatment of normal functions on the countable ordinals, and we give a glimpse of Verlen hierarchies, some subsystems of second-order logic, slow-growing and fast-growing hierarchies including Girard's result, and Goodstein sequences. The central theme of this paper is a powerful theorem due to (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Equational derivation vs. computation.W. G. Handley & S. S. Wainer - 1994 - Annals of Pure and Applied Logic 70 (1):17-49.
    Subrecursive hierarchy classifications are used to compare the complexities of recursive functions according to their derivations in a version of Kleene's equation calculus, and their computations by term-rewriting. In each case ordinal bounds are assigned, and it turns out that the respective complexity measures are given by a version of the Fast Growing Hierarchy, and the Slow Growing Hierarchy. Known comparisons between the two hierarchies then provide ordinal trade-offs between derivation and computation. Characteristics of some well-known subrecursive classes are also (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Downey, R., Gasarch, W. and Moses, M., The structure.S. D. Friedman, W. G. Handley, S. S. Wainer, A. Joyal, I. Moerdijk, L. Newelski, F. van Engelen & J. van Oosten - 1994 - Annals of Pure and Applied Logic 70 (1):287.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Generalization of the Consistency Predicate.Zofia Adamowicz - 2012 - Studies in Logic, Grammar and Rhetoric 27 (40).
    Download  
     
    Export citation  
     
    Bookmark  
  • Czego informatycy nauczyli się od Andrzeja Grzegorczyka?Andrzej Salwicki - 2012 - Studies in Logic, Grammar and Rhetoric 27 (40).
    Download  
     
    Export citation  
     
    Bookmark   1 citation