Switch to: References

Add citations

You must login to add citations.
  1. Implicational logics II: additional connectives and characterizations of semilinearity.Petr Cintula & Carles Noguera - 2016 - Archive for Mathematical Logic 55 (3-4):353-372.
    This is the continuation of the paper :417–446, 2010). We continue the abstract study of non-classical logics based on the kind of generalized implication connectives they possess and we focus on semilinear logics, i.e. those that are complete with respect to the class of models where the implication defines a linear order. We obtain general characterizations of semilinearity in terms of the intersection-prime extension property, the syntactical semilinearity metarule and the class of finitely subdirectly irreducible models. Moreover, we consider extensions (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Order algebraizable logics.James G. Raftery - 2013 - Annals of Pure and Applied Logic 164 (3):251-283.
    This paper develops an order-theoretic generalization of Blok and Pigozziʼs notion of an algebraizable logic. Unavoidably, the ordered model class of a logic, when it exists, is not unique. For uniqueness, the definition must be relativized, either syntactically or semantically. In sentential systems, for instance, the order algebraization process may be required to respect a given but arbitrary polarity on the signature. With every deductive filter of an algebra of the pertinent type, the polarity associates a reflexive and transitive relation (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On an axiomatic system for the logic of linearly ordered BCI-matrices.San-min Wang & Dao-Wu Pei - 2012 - Archive for Mathematical Logic 51 (3-4):285-297.
    The logic FBCI given by linearly ordered BCI-matrices is known not to be an axiomatic extension of the well-known BCI logic. In this paper we axiomatize FBCI by adding a recursively enumerable set of schemes of inference rules to BCI and show that there is no finite axiomatization for FBCI.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Nonassociative substructural logics and their semilinear extensions: Axiomatization and completeness properties: Nonassociative substructural logics.Petr Cintula, Rostislav Horčík & Carles Noguera - 2013 - Review of Symbolic Logic 6 (3):394-423.
    Substructural logics extending the full Lambek calculus FL have largely benefited from a systematical algebraic approach based on the study of their algebraic counterparts: residuated lattices. Recently, a nonassociative generalization of FL has been studied by Galatos and Ono as the logic of lattice-ordered residuated unital groupoids. This paper is based on an alternative Hilbert-style presentation for SL which is almost MP -based. This presentation is then used to obtain, in a uniform way applicable to most substructural logics, a form (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Implicational logics III: completeness properties.Petr Cintula & Carles Noguera - 2018 - Archive for Mathematical Logic 57 (3-4):391-420.
    This paper presents an abstract study of completeness properties of non-classical logics with respect to matricial semantics. Given a class of reduced matrix models we define three completeness properties of increasing strength and characterize them in several useful ways. Some of these characterizations hold in absolute generality and others are for logics with generalized implication or disjunction connectives, as considered in the previous papers. Finally, we consider completeness with respect to matrices with a linear dense order and characterize it in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The finite model property for semilinear substructural logics.San-Min Wang - 2013 - Mathematical Logic Quarterly 59 (4-5):268-273.
    In this paper, we show that the finite model property fails for certain non‐integral semilinear substructural logics including Metcalfe and Montagna's uninorm logic and involutive uninorm logic, and a suitable extension of Metcalfe, Olivetti and Gabbay's pseudo‐uninorm logic. Algebraically, the results show that certain classes of bounded residuated lattices that are generated as varieties by their linearly ordered members are not generated as varieties by their finite members.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Proof by Cases Property and its Variants in Structural Consequence Relations.Petr Cintula & Carles Noguera - 2013 - Studia Logica 101 (4):713-747.
    This paper is a contribution to the study of the rôle of disjunction inAlgebraic Logic. Several kinds of (generalized) disjunctions, usually defined using a suitable variant of the proof by cases property, were introduced and extensively studied in the literature mainly in the context of finitary logics. The goals of this paper are to extend these results to all logics, to systematize the multitude of notions of disjunction (both those already considered in the literature and those introduced in this paper), (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Implicational Tonoid Logics: Algebraic and Relational Semantics.Eunsuk Yang & J. Michael Dunn - 2021 - Logica Universalis 15 (4):435-456.
    This paper combines two classes of generalized logics, one of which is the class of weakly implicative logics introduced by Cintula and the other of which is the class of gaggle logics introduced by Dunn. For this purpose we introduce implicational tonoid logics. More precisely, we first define implicational tonoid logics in general and examine their relation to weakly implicative logics. We then provide algebraic semantics for implicational tonoid logics. Finally, we consider relational semantics, called Routley–Meyer–style semantics, for finitary those (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Note on Natural Extensions in Abstract Algebraic Logic.Petr Cintula & Carles Noguera - 2015 - Studia Logica 103 (4):815-823.
    Transfer theorems are central results in abstract algebraic logic that allow to generalize properties of the lattice of theories of a logic to any algebraic model and its lattice of filters. Their proofs sometimes require the existence of a natural extension of the logic to a bigger set of variables. Constructions of such extensions have been proposed in particular settings in the literature. In this paper we show that these constructions need not always work and propose a wider setting in (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Algebraizable logics with a strong conjunction and their semi-lattice based companions.Ramon Jansana - 2012 - Archive for Mathematical Logic 51 (7-8):831-861.
    The best known algebraizable logics with a conjunction and an implication have the property that the conjunction defines a meet semi-lattice in the algebras of their algebraic counterpart. This property makes it possible to associate with them a semi-lattice based deductive system as a companion. Moreover, the order of the semi-lattice is also definable using the implication. This makes that the connection between the properties of the logic and the properties of its semi-lattice based companion is strong. We introduce a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Strict core fuzzy logics and quasi-witnessed models.Marco Cerami & Francesc Esteva - 2011 - Archive for Mathematical Logic 50 (5-6):625-641.
    In this paper we prove strong completeness of axiomatic extensions of first-order strict core fuzzy logics with the so-called quasi-witnessed axioms with respect to quasi-witnessed models. As a consequence we obtain strong completeness of Product Predicate Logic with respect to quasi-witnessed models, already proven by M.C. Laskowski and S. Malekpour in [19]. Finally we study similar problems for expansions with Δ, define Δ-quasi-witnessed axioms and prove that any axiomatic extension of a first-order strict core fuzzy logic, expanded with Δ, and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Extension Properties and Subdirect Representation in Abstract Algebraic Logic.Tomáš Lávička & Carles Noguera - 2018 - Studia Logica 106 (6):1065-1095.
    This paper continues the investigation, started in Lávička and Noguera : 521–551, 2017), of infinitary propositional logics from the perspective of their algebraic completeness and filter extension properties in abstract algebraic logic. If follows from the Lindenbaum Lemma used in standard proofs of algebraic completeness that, in every finitary logic, intersection-prime theories form a basis of the closure system of all theories. In this article we consider the open problem of whether these properties can be transferred to lattices of filters (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A New Hierarchy of Infinitary Logics in Abstract Algebraic Logic.Carles Noguera & Tomáš Lávička - 2017 - Studia Logica 105 (3):521-551.
    In this article we investigate infinitary propositional logics from the perspective of their completeness properties in abstract algebraic logic. It is well-known that every finitary logic is complete with respect to its relatively subdirectly irreducible models. We identify two syntactical notions formulated in terms of intersection-prime theories that follow from finitarity and are sufficient conditions for the aforementioned completeness properties. We construct all the necessary counterexamples to show that all these properties define pairwise different classes of logics. Consequently, we obtain (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Birkhoff’s and Mal’cev’s Theorems for Implicational Tonoid Logics.Eunsuk Yang - 2023 - Studia Logica 111 (3):501-519.
    In the context of implicational tonoid logics, this paper investigates analogues of Birkhoff’s two theorems, the so-called subdirect representation and varieties theorems, and of Mal’cev’s quasi-varieties theorem. More precisely, we first recall the class of implicational tonoid logics. Next, we establish the subdirect product representation theorem for those logics and then consider some more related results such as completeness. Thirdly, we consider the varieties theorem for them. Finally, we introduce an analogue of Mal’cev’s quasi-varieties theorem for algebras.
    Download  
     
    Export citation  
     
    Bookmark