Switch to: References

Add citations

You must login to add citations.
  1. A Counterexample to Deflationary Nominalism.Nicholas Danne - 2023 - Erkenntnis 88 (4):1721-1740.
    According to Jody Azzouni’s “deflationary nominalism,” the singular terms of mathematical language applied or unapplied to science refer to nothing at all. What does exist, Azzouni claims, must satisfy the quaternary condition he calls “thick epistemic access” (TEA). In this paper I argue that TEA surreptitiously reifies some mathematical entities. The mathematical entity that I take TEA to reify is the Fourier harmonic, an infinite-duration monochromatic sinusoid applied throughout engineering and physics. I defend the reality of the harmonic, in Azzouni’s (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Deflationary Nominalism and Puzzle Avoidance.David Mark Kovacs - 2019 - Philosophia Mathematica 27 (1):88-104.
    In a series of works, Jody Azzouni has defended deflationary nominalism, the view that certain sentences quantifying over mathematical objects are literally true, although such objects do not exist. One alleged attraction of this view is that it avoids various philosophical puzzles about mathematical objects. I argue that this thought is misguided. I first develop an ontologically neutral counterpart of Field’s reliability challenge and argue that deflationary nominalism offers no distinctive answer to it. I then show how this reasoning generalizes (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • There is No Easy Road to Nominalism.M. Colyvan - 2010 - Mind 119 (474):285-306.
    Hartry Field has shown us a way to be nominalists: we must purge our scientific theories of quantification over abstracta and we must prove the appropriate conservativeness results. This is not a path for the faint hearted. Indeed, the substantial technical difficulties facing Field's project have led some to explore other, easier options. Recently, Jody Azzouni, Joseph Melia, and Stephen Yablo have argued that it is a mistake to read our ontological commitments simply from what the quantifiers of our best (...)
    Download  
     
    Export citation  
     
    Bookmark   109 citations  
  • A Truthmaker Indispensability Argument.Sam Baron - 2013 - Synthese 190 (12):2413-2427.
    Recently, nominalists have made a case against the Quine–Putnam indispensability argument for mathematical Platonism by taking issue with Quine’s criterion of ontological commitment. In this paper I propose and defend an indispensability argument founded on an alternative criterion of ontological commitment: that advocated by David Armstrong. By defending such an argument I place the burden back onto the nominalist to defend her favourite criterion of ontological commitment and, furthermore, show that criterion cannot be used to formulate a plausible form of (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Deflating existence away? A critique of Azzouni's nominalism.Yvonne Raley - 2009 - Philosophia Mathematica 17 (1):73-83.
    Yet, he also says that it is philosophically indeterminate which criterion for what exists is correct. Nominalism is the view that certain objects ( i.e ., abstract objects) do not exist, and not the view that it is philosophically indeterminate whether or not they do. I resolve the dilemma that Azzouni's claims pose: Azzouni is a non-factualist about what exists, but he is a factualist about which criterion for what exists our community of speakers has adopted. It is in the (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • An Inferential Conception of the Application of Mathematics.Otávio Bueno & Mark Colyvan - 2011 - Noûs 45 (2):345-374.
    A number of people have recently argued for a structural approach to accounting for the applications of mathematics. Such an approach has been called "the mapping account". According to this view, the applicability of mathematics is fully accounted for by appreciating the relevant structural similarities between the empirical system under study and the mathematics used in the investigation ofthat system. This account of applications requires the truth of applied mathematical assertions, but it does not require the existence of mathematical objects. (...)
    Download  
     
    Export citation  
     
    Bookmark   108 citations  
  • Existence, Mathematical Nominalism, and Meta-Ontology: An Objection to Azzouni on Criteria for Existence.Farbod Akhlaghi-Ghaffarokh - 2018 - Philosophia Mathematica 26 (2):251-265.
    Jody Azzouni argues that whilst it is indeterminate what the criteria for existence are, there is a criterion that has been collectively adopted to use ‘exist’ that we can employ to argue for positions in ontology. I raise and defend a novel objection to Azzouni: his view has the counterintuitive consequence that the facts regarding what exists can and will change when users of the word ‘exist’ change what criteria they associate with its usage. Considering three responses, I argue Azzouni (...)
    Download  
     
    Export citation  
     
    Bookmark