Switch to: References

Add citations

You must login to add citations.
  1. An Inferential Response to the "Loss of Reality Objection" to Structural Empiricism.Franco Menares Paredes - 2022 - Principia: An International Journal of Epistemology 26 (3):539–558.
    This paper aims to meet an objection that has been raised against structural empiricism known as the “loss of reality objection.” I argue that an inferential approach to scientific representation allows the structural empiricist to account for the representation of phenomena by data models and ensures that such a representation is not arbitrary. By the notions of immersion, derivation, and interpretation, I show how data models are able to represent phenomena in a non-arbitrary manner. I conclude this paper with a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Psa 2018.Philsci-Archive -Preprint Volume- - unknown
    These preprints were automatically compiled into a PDF from the collection of papers deposited in PhilSci-Archive in conjunction with the PSA 2018.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Representation and Explanation: structuralism, the similarity account, and the hotchpotch picture.Ziren Yang - 2020 - Dissertation, University of Leeds
    This thesis starts with three challenges to the structuralist accounts of applied mathematics. Structuralism views applied mathematics as a matter of building mapping functions between mathematical and target-ended structures. The first challenge concerns how it is possible for a non-mathematical target to be represented mathematically when the mapping functions per se are mathematical objects. The second challenge arises out of inconsistent early calculus, which suggests that mathematical representation does not require rigorous mathematical structures. The third challenge comes from renormalisation group (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Outline of a dynamical inferential conception of the application of mathematics.Tim Räz & Tilman Sauer - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 49:57-72.
    We outline a framework for analyzing episodes from the history of science in which the application of mathematics plays a constitutive role in the conceptual development of empirical sciences. Our starting point is the inferential conception of the application of mathematics, recently advanced by Bueno and Colyvan. We identify and discuss some systematic problems of this approach. We propose refinements of the inferential conception based on theoretical considerations and on the basis of a historical case study. We demonstrate the usefulness (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Explanation versus Understanding: On Two Roles of Dynamical Systems Theory in Extended Cognition Research.Katarzyna Kuś & Krzysztof Wójtowicz - forthcoming - Foundations of Science:1-26.
    It is widely believed that mathematics carries a substantial part of the explanatory burden in science. However, mathematics can also play important heuristic roles of a different kind, being a source of new ideas and approaches, allowing us to build toy models, enhancing expressive power and providing fruitful conceptualizations. In this paper, we focus on the application of dynamical systems theory (DST) within the extended cognition (EC) field of cognitive science, considering this case study to be a good illustration of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Road Work Ahead: Heavy Machinery on the Easy Road.M. Colyvan - 2012 - Mind 121 (484):1031-1046.
    In this paper I reply to Jody Azzouni, Otávio Bueno, Mary Leng, David Liggins, and Stephen Yablo, who offer defences of so-called ‘ easy road ’ nominalist strategies in the philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Idealisations in normative models.Mark Colyvan - 2013 - Synthese 190 (8):1337-1350.
    In this paper I discuss the kinds of idealisations invoked in normative theories—logic, epistemology, and decision theory. I argue that very often the so-called norms of rationality are in fact mere idealisations invoked to make life easier. As such, these idealisations are not too different from various idealisations employed in scientific modelling. Examples of the latter include: fluids are incompressible (in fluid mechanics), growth rates are constant (in population ecology), and the gravitational influence of distant bodies can be ignored (in (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Epistemic Projects, Indispensability, and the Structure of Modal Thought.Felipe Morales Carbonell - 2020 - Res Philosophica 97 (4):611-638.
    I argue that modal epistemology should pay more attention to questions about the structure and function of modal thought. We can treat these questions from synchronic and diachronic angles. From a synchronic perspective, I consider whether a general argument for the epistemic support of modal though can be made on the basis of modal thoughs’s indispensability for what Enoch and Schechter (2008) call rationally required epistemic projects. After formulating the argument, I defend it from various objections. I also examine the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Styles of reasoning: A pluralist view.Otávio Bueno - 2012 - Studies in History and Philosophy of Science Part A 43 (4):657-665.
    Styles of reasoning are important devices to understand scientific practice. As I use the concept, a style of reasoning is a pattern of inferential relations that are used to select, interpret, and support evidence for scientific results. In this paper, I defend the view that there is a plurality of styles of reasoning: different domains of science often invoke different styles. I argue that this plurality is an important source of disunity in scientific practice, and it provides additional arguments in (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • How Theories Represent.Otávio Bueno & Steven French - 2011 - British Journal for the Philosophy of Science 62 (4):857-894.
    An account of scientific representation in terms of partial structures and partial morphisms is further developed. It is argued that the account addresses a variety of difficulties and challenges that have recently been raised against such formal accounts of representation. This allows some useful parallels between representation in science and art to be drawn, particularly with regard to apparently inconsistent representations. These parallels suggest that a unitary account of scientific and artistic representation is possible, and our article can be viewed (...)
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • Can Mathematics Explain Physical Phenomena?Otávio Bueno & Steven French - 2012 - British Journal for the Philosophy of Science 63 (1):85-113.
    Batterman raises a number of concerns for the inferential conception of the applicability of mathematics advocated by Bueno and Colyvan. Here, we distinguish the various concerns, and indicate how they can be assuaged by paying attention to the nature of the mappings involved and emphasizing the significance of interpretation in this context. We also indicate how this conception can accommodate the examples that Batterman draws upon in his critique. Our conclusion is that ‘asymptotic reasoning’ can be straightforwardly accommodated within the (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Wigner’s Puzzle on Applicability of Mathematics: On What Table to Assemble It?Cătălin Bărboianu - 2019 - Axiomathes 1:1-30.
    Attempts at solving what has been labeled as Eugene Wigner’s puzzle of applicability of mathematics are still far from arriving at an acceptable solution. The accounts developed to explain the “miracle” of applied mathematics vary in nature, foundation, and solution, from denying the existence of a genuine problem to designing structural theories based on mathematical formalism. Despite this variation, all investigations treated the problem in a unitary way with respect to the target, pointing to one or two ‘why’ or ‘how’ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Wigner’s Puzzle on Applicability of Mathematics: On What Table to Assemble It?Cătălin Bărboianu - 2020 - Axiomathes 30 (4):423-452.
    Attempts at solving what has been labeled as Eugene Wigner’s puzzle of applicability of mathematics are still far from arriving at an acceptable solution. The accounts developed to explain the “miracle” of applied mathematics vary in nature, foundation, and solution, from denying the existence of a genuine problem to designing structural theories based on mathematical formalism. Despite this variation, all investigations treated the problem in a unitary way with respect to the target, pointing to one or two ‘why’ or ‘how’ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Propensity Interpretation of Probability: A Re-evaluation.Joseph Berkovitz - 2015 - Erkenntnis 80 (S3):629-711.
    Single-case and long-run propensity theories are among the main objective interpretations of probability. There have been various objections to these theories, e.g. that it is difficult to explain why propensities should satisfy the probability axioms and, worse, that propensities are at odds with these axioms, that the explication of propensities is circular and accordingly not informative, and that single-case propensities are metaphysical and accordingly non-scientific. We consider various propensity theories of probability and their prospects in light of these objections. We (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The Applicability of Mathematics to Physical Modality.Nora Berenstain - 2017 - Synthese 194 (9):3361-3377.
    This paper argues that scientific realism commits us to a metaphysical determination relation between the mathematical entities that are indispensible to scientific explanation and the modal structure of the empirical phenomena those entities explain. The argument presupposes that scientific realism commits us to the indispensability argument. The viewpresented here is that the indispensability of mathematics commits us not only to the existence of mathematical structures and entities but to a metaphysical determination relation between those entities and the modal structure of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Optimal representations and the Enhanced Indispensability Argument.Manuel Barrantes - 2019 - Synthese 196 (1):247-263.
    The Enhanced Indispensability Argument appeals to the existence of Mathematical Explanations of Physical Phenomena to justify mathematical Platonism, following the principle of Inference to the Best Explanation. In this paper, I examine one example of a MEPP—the explanation of the 13-year and 17-year life cycle of magicicadas—and argue that this case cannot be used defend the EIA. I then generalize my analysis of the cicada case to other MEPPs, and show that these explanations rely on what I will call ‘optimal (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mathematical Explanation: A Pythagorean Proposal.Samuel Baron - forthcoming - British Journal for the Philosophy of Science.
    Mathematics appears to play an explanatory role in science. This, in turn, is thought to pave a way toward mathematical Platonism. A central challenge for mathematical Platonists, however, is to provide an account of how mathematical explanations work. I propose a property-based account: physical systems possess mathematical properties, which either guarantee the presence of other mathematical properties and, by extension, the physical states that possess them; or rule out other mathematical properties, and their associated physical states. I explain why Platonists (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Explanation by Law.Sam Baron - 2019 - British Journal for the Philosophy of Science 70 (3):683-717.
    Call an explanation in which a non-mathematical fact is explained—in part or in whole—by mathematical facts: an extra-mathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extra-mathematical explanation is developed. The theory is modelled on a deductive-nomological theory of scientific explanation. A basic DN account of extra-mathematical explanation is proposed and then redeveloped in the light of two difficulties that the basic theory faces. The final view (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Explaining Mathematical Explanation.Sam Baron - 2016 - Philosophical Quarterly 66 (264):458-480.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Mathematical Explanations of Physical Phenomena.Sorin Bangu - 2021 - Australasian Journal of Philosophy 99 (4):669-682.
    Can there be mathematical explanations of physical phenomena? In this paper, I suggest an affirmative answer to this question. I outline a strategy to reconstruct several typical examples of such explanations, and I show that they fit a common model. The model reveals that the role of mathematics is explicatory. Isolating this role may help to re-focus the current debate on the more specific question as to whether this explicatory role is, as proposed here, also an explanatory one.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Indispensability and Explanation.Sorin Bangu - 2013 - British Journal for the Philosophy of Science 64 (2):255-277.
    The question as to whether there are mathematical explanations of physical phenomena has recently received a great deal of attention in the literature. The answer is potentially relevant for the ontology of mathematics; if affirmative, it would support a new version of the indispensability argument for mathematical realism. In this article, I first review critically a few examples of such explanations and advance a general analysis of the desiderata to be satisfied by them. Second, in an attempt to strengthen the (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The mathematical stance.Alan Baker - 2022 - Synthese 200 (1):1-18.
    Defenders of the enhanced indispensability argument argue that the most effective route to platonism is via the explanatory role of mathematical posits in science. Various compelling cases of mathematical explanation in science have been proposed, but a satisfactory general philosophical account of such explanations is lacking. In this paper, I lay out the framework for such an account based on the notion of “the mathematical stance.” This is developed by analogy with Dennett’s well-known concept of “the intentional stance.” Roughly, adopting (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Indexing and Mathematical Explanation.Alan Baker & Mark Colyvan - 2011 - Philosophia Mathematica 19 (3):323-334.
    We discuss a recent attempt by Chris Daly and Simon Langford to do away with mathematical explanations of physical phenomena. Daly and Langford suggest that mathematics merely indexes parts of the physical world, and on this understanding of the role of mathematics in science, there is no need to countenance mathematical explanation of physical facts. We argue that their strategy is at best a sketch and only looks plausible in simple cases. We also draw attention to how frequently Daly and (...)
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Toward the Applicability of Statistics: A Representational View.Mahdi Ashoori & S. Mahmoud Taheri - 2019 - Principia: An International Journal of Epistemology 23 (1):113-129.
    The problem of understanding how statistical inference is, and can be, applied in empirical sciences is important for the methodology of science. It is the objective of this paper to gain a better understanding of the role of statistical methods in scientific modeling. The important question of whether the applicability reduces to the representational properties of statistical models is discussed. It will be shown that while the answer to this question is positive, representation in statistical models is not purely structural. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Can Information Concepts have Physical Content?Javier Anta - 2023 - Perspectives on Science 31 (2):207-232.
    In this paper, I analyze the physical content of the main information concepts in the history of physics of the last seven decades. I argue that this physical character should be evaluated not by appealing to analytical-linguistic confusion (Timpson 2013) or to the usefulness of its applicability (Lombardi et al. 2016), but properly from its capacity to allow us to acquire significant knowledge about the physical world. After systematically employing this epistemic criterion of physical significance I will conclude by rejecting (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Stochastic Model of Mathematics and Science.David H. Wolpert & David B. Kinney - 2024 - Foundations of Physics 54 (2):1-67.
    We introduce a framework that can be used to model both mathematics and human reasoning about mathematics. This framework involves stochastic mathematical systems (SMSs), which are stochastic processes that generate pairs of questions and associated answers (with no explicit referents). We use the SMS framework to define normative conditions for mathematical reasoning, by defining a “calibration” relation between a pair of SMSs. The first SMS is the human reasoner, and the second is an “oracle” SMS that can be interpreted as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Nature of the Structures of Applied Mathematics and the Metatheoretical Justification for the Mathematical Modeling.Catalin Barboianu - 2015 - Romanian Journal of Analytic Philosophy 9 (2):1-32.
    The classical (set-theoretic) concept of structure has become essential for every contemporary account of a scientific theory, but also for the metatheoretical accounts dealing with the adequacy of such theories and their methods. In the latter category of accounts, and in particular, the structural metamodels designed for the applicability of mathematics have struggled over the last decade to justify the use of mathematical models in sciences beyond their 'indispensability' in terms of either method or concepts/entities. In this paper, I argue (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Internal Applications and Puzzles of the Applicability of Mathematics.Douglas Bertrand Marshall - 2024 - Philosophia Mathematica 32 (1):1-20.
    Just as mathematics helps us to represent and reason about the natural world, in its internal applications one branch of mathematics helps us to represent and reason about the subject matter of another. Recognition of the close analogy between internal and external applications of mathematics can help resolve two persistent philosophical puzzles concerning its applicability: a platonist puzzle arising from the abstractness of mathematical objects; and an empiricist puzzle arising from mathematical propositions’ lack of empirical factual content. In order to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Models, Fictions and Artifacts.Tarja Knuuttila - 2021 - In Wenceslao J. Gonzalez (ed.), Language and Scientific Research. Springer Verlag. pp. 199-22.
    This paper discusses modeling from the artifactual perspective. The artifactual approach conceives models as erotetic devices. They are purpose-built systems of dependencies that are constrained in view of answering a pending scientific question, motivated by theoretical or empirical considerations. In treating models as artifacts, the artifactual approach is able to address the various languages of sciences that are overlooked by the traditional accounts that concentrate on the relationship of representation in an abstract and general manner. In contrast, the artifactual approach (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Scientific Modeling Versus Engineering Modeling: Similarities and Dissimilarities.Aboutorab Yaghmaie - 2021 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 52 (3):455-474.
    This article aims to answer what I call the “constitution question of engineering modeling”: in virtue of what does an engineering model model its target system? To do so, I will offer a category-theoretic, structuralist account of design, using the olog framework. Drawing on this account, I will conclude that engineering and scientific models are not only cognitively but also representationally indistinguishable. I will finally propose an axiological criterion for distinguishing scientific from engineering modeling.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Pluralism in evolutionary controversies: styles and averaging strategies in hierarchical selection theories.Rasmus Grønfeldt Winther, Michael J. Wade & Christopher C. Dimond - 2013 - Biology and Philosophy 28 (6):957-979.
    Two controversies exist regarding the appropriate characterization of hierarchical and adaptive evolution in natural populations. In biology, there is the Wright-Fisher controversy over the relative roles of random genetic drift, natural selection, population structure, and interdemic selection in adaptive evolution begun by Sewall Wright and Ronald Aylmer Fisher. There is also the Units of Selection debate, spanning both the biological and the philosophical literature and including the impassioned group-selection debate. Why do these two discourses exist separately, and interact relatively little? (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Is Mathematics Unreasonably Effective?Daniel Waxman - 2021 - Australasian Journal of Philosophy 99 (1):83-99.
    Many mathematicians, physicists, and philosophers have suggested that the fact that mathematics—an a priori discipline informed substantially by aesthetic considerations—can be applied to natural science is mysterious. This paper sharpens and responds to a challenge to this effect. I argue that the aesthetic considerations used to evaluate and motivate mathematics are much more closely connected with the physical world than one might presume, and (with reference to case-studies within Galois theory and probabilistic number theory) show that they are correlated with (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Non-causal understanding with economic models: the case of general equilibrium.Philippe Verreault-Julien - 2017 - Journal of Economic Methodology 24 (3):297-317.
    How can we use models to understand real phenomena if models misrepresent the very phenomena we seek to understand? Some accounts suggest that models may afford understanding by providing causal knowledge about phenomena via how-possibly explanations. However, general equilibrium models, for example, pose a challenge to this solution since their contribution appears to be purely mathematical results. Despite this, practitioners widely acknowledge that it improves our understanding of the world. I argue that the Arrow–Debreu model provides a mathematical how-possibly explanation (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Can we have mathematical understanding of physical phenomena?Gabriel Târziu - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (1):91-109.
    Can mathematics contribute to our understanding of physical phenomena? One way to try to answer this question is by getting involved in the recent philosophical dispute about the existence of mathematical explanations of physical phenomena. If there is such a thing, given the relation between explanation and understanding, we can say that there is an affirmative answer to our question. But what if we do not agree that mathematics can play an explanatory role in science? Can we still consider that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Inconsistent idealizations and inferentialism about scientific representation.Peter Tan - 2021 - Studies in History and Philosophy of Science Part A 89 (C):11-18.
    Inferentialists about scientific representation hold that an apparatus’s representing a target system consists in the apparatus allowing “surrogative inferences” about the target. I argue that a serious problem for inferentialism arises from the fact that many scientific theories and models contain internal inconsistencies. Inferentialism, left unamended, implies that inconsistent scientific models have unlimited representational power, since an inconsistency permits any conclusion to be inferred. I consider a number of ways that inferentialists can respond to this challenge before suggesting my own (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Representational Semantic Conception.Mauricio Suárez & Francesca Pero - 2019 - Philosophy of Science 86 (2):344-365.
    This paper argues for a representational semantic conception of scientific theories, which respects the bare claim of any semantic view, namely that theories can be characterised as sets of models. RSC must be sharply distinguished from structural versions that assume a further identity of ‘models’ and ‘structures’, which we reject. The practice-turn in the recent philosophical literature suggests instead that modelling must be understood in a deflationary spirit, in terms of the diverse representational practices in the sciences. These insights are (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Structuralism and the conformity of mathematics and nature.Noah Stemeroff - 2021 - Studies in History and Philosophy of Science Part A 86 (C):84-92.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Epistemic Indispensability Argument.Cristian Soto - 2019 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 50 (1):145-161.
    This article elaborates the epistemic indispensability argument, which fully embraces the epistemic contribution of mathematics to science, but rejects the contention that such a contribution is a reason for granting reality to mathematicalia. Section 1 introduces the distinction between ontological and epistemic readings of the indispensability argument. Section 2 outlines some of the main flaws of the first premise of the ontological reading. Section 3 advances the epistemic indispensability argument in view of both applied and pure mathematics. And Sect. 4 (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Sobre el colapso de las estructuras matemáticas Y físicas en el realismo estructural óntico.Cristian Soto - 2019 - Kriterion: Journal of Philosophy 60 (143):279-295.
    RESUMEN La sección 1 introduce lo que llamo la tesis del colapso de las estructuras matemáticas y las estructuras físicas. La sección 2 examina si acaso la indispensabilidad de las matemáticas para la física fundamental involucra la adopción del platonismo matemático, en este caso acerca de estructuras matemáticas, como argumenta el realismo estructural óntico. La sección 3 muestra que la adopción de la tesis del colapso arriesga introducir la hipótesis del universo matemático. Desde la perspectiva de la concepción inferencial en (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Applying mathematics to empirical sciences: flashback to a puzzling disciplinary interaction.Raphaël Sandoz - 2018 - Synthese 195 (2):875-898.
    This paper aims to reassess the philosophical puzzle of the “applicability of mathematics to physical sciences” as a misunderstood disciplinary interplay. If the border isolating mathematics from the empirical world is based on appropriate criteria, how does one explain the fruitfulness of its systematic crossings in recent centuries? An analysis of the evolution of the criteria used to separate mathematics from experimental sciences will shed some light on this question. In this respect, we will highlight the historical influence of three (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Inseparable Bedfellows: Imagination and Mathematics in Economic Modeling.Fiora Salis & Mary Leng - 2023 - Philosophy of the Social Sciences 53 (4):255-280.
    In this paper we explore the hypothesis that constrained uses of imagination are crucial to economic modeling. We propose a theoretical framework to develop this thesis through a number of specific hypotheses that we test and refine through six new, representative case studies. Our ultimate goal is to develop a philosophical account that is practice oriented and informed by empirical evidence. To do this, we deploy an abductive reasoning strategy. We start from a robust set of hypotheses and leave space (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Applicability of Mathematics: Beyond Mapping Accounts.Davide Rizza - 2013 - Philosophy of Science 80 (3):398-412.
    In this article, I argue that mapping-based accounts of applications cannot be comprehensive and must be supplemented by analyses of other, qualitatively different, forms of application. I support these claims by providing a detailed discussion of the application of mathematics to a problem of election design that is prominent in social choice theory.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Mathematical problem-solving in scientific practice.Davide Rizza - 2021 - Synthese 199 (5-6):13621-13641.
    In this paper I study the activity of mathematical problem-solving in scientific practice, focussing on enquiries in mathematical social science. I identify three salient phases of mathematical problem-solving and adopt them as a reference frame to investigate aspects of applications that have not yet received extensive attention in the philosophical literature.
    Download  
     
    Export citation  
     
    Bookmark  
  • Eulerian Routing in Practice.Davide Rizza - 2024 - Erkenntnis 89 (2):817-839.
    The Königsberg bridge problem has played a central role in recent philosophical discussions of mathematical explanation. In this paper I look at it from a novel perspective, which is independent of explanatory concerns. Instead of restricting attention to the solved Königsberg bridge problem, I consider Euler’s construction of a solution method for the problem and discuss two later integrations of Euler’s approach into a more structured methodology, arisen in operations research and genetics respectively. By examining Euler’s work and its later (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Moving Beyond Causes: Optimality Models and Scientific Explanation.Collin Rice - 2013 - Noûs 49 (3):589-615.
    A prominent approach to scientific explanation and modeling claims that for a model to provide an explanation it must accurately represent at least some of the actual causes in the event's causal history. In this paper, I argue that many optimality explanations present a serious challenge to this causal approach. I contend that many optimality models provide highly idealized equilibrium explanations that do not accurately represent the causes of their target system. Furthermore, in many contexts, it is in virtue of (...)
    Download  
     
    Export citation  
     
    Bookmark   94 citations  
  • Factive scientific understanding without accurate representation.Collin C. Rice - 2016 - Biology and Philosophy 31 (1):81-102.
    This paper analyzes two ways idealized biological models produce factive scientific understanding. I then argue that models can provide factive scientific understanding of a phenomenon without providing an accurate representation of the features of their real-world target system. My analysis of these cases also suggests that the debate over scientific realism needs to investigate the factive scientific understanding produced by scientists’ use of idealized models rather than the accuracy of scientific models themselves.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • How Do You Apply Mathematics?Graham Priest - 2022 - Axiomathes 32 (3):1169-1184.
    As far as disputes in the philosophy of pure mathematics goes, these are usually between classical mathematics, intuitionist mathematics, paraconsistent mathematics, and so on. My own view is that of a mathematical pluralist: all these different kinds of mathematics are equally legitimate. Applied mathematics is a different matter. In this, a piece of pure mathematics is applied in an empirical area, such as physics, biology, or economics. There can then certainly be a disputes about what the correct pure mathematics to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The role of pragmatic considerations during mathematical derivation in the applicability of mathematics.José Antonio Pérez-Escobar - forthcoming - Philosophical Investigations.
    The conditions involved in the applicability of mathematics in science are the subject of ongoing debates. One of the best‐received approaches is the inferential account, which involves structural mappings and pragmatic considerations in a three‐step model. According to the inferential account, these pragmatic considerations happen in the immersion and interpretation stages, but not during derivation (symbol‐pushing in a mathematical formalism). In this work, I draw inspiration from the later Wittgenstein and make the case that the applicability of mathematics also rests (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Thinking about idealization, abstraction and scientific models: an introduction.Demetris Portides - 2021 - Synthese 198 (Suppl 24):5849-5853.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Batterman's 'On the Explanatory Role of Mathematics in Empirical Science'.Christopher Pincock - 2011 - British Journal for the Philosophy of Science 62 (1):211 - 217.
    This discussion note of (Batterman [2010]) clarifies the modest aims of my 'mapping account' of applications of mathematics in science. Once these aims are clarified it becomes clear that Batterman's 'completely new approach' (Batterman [2010], p. 24) is not needed to make sense of his cases of idealized mathematical explanations. Instead, a positive proposal for the explanatory power of such cases can be reconciled with the mapping account.
    Download  
     
    Export citation  
     
    Bookmark   7 citations