Switch to: References

Add citations

You must login to add citations.
  1. Why do numbers exist? A psychologist constructivist account.Markus Pantsar - forthcoming - Inquiry: An Interdisciplinary Journal of Philosophy.
    In this paper, I study the kind of questions we can ask about the existence of numbers. In addition to asking whether numbers exist, and how, I argue that there is also a third relevant question: why numbers exist. In platonist and nominalist accounts this question may not make sense, but in the psychologist account I develop, it is as well-placed as the other two questions. In fact, there are two such why-questions: the causal why-question asks what causes numbers to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • From Maximal Intersubjectivity to Objectivity: An Argument from the Development of Arithmetical Cognition.Markus Pantsar - 2022 - Topoi 42 (1):271-281.
    One main challenge of non-platonist philosophy of mathematics is to account for the apparent objectivity of mathematical knowledge. Cole and Feferman have proposed accounts that aim to explain objectivity through the intersubjectivity of mathematical knowledge. In this paper, focusing on arithmetic, I will argue that these accounts as such cannot explain the apparent objectivity of mathematical knowledge. However, with support from recent progress in the empirical study of the development of arithmetical cognition, a stronger argument can be provided. I will (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • No Magic: From Phenomenology of Practice to Social Ontology of Mathematics.Mirja Hartimo & Jenni Rytilä - 2023 - Topoi 42 (1):283-295.
    The paper shows how to use the Husserlian phenomenological method in contemporary philosophical approaches to mathematical practice and mathematical ontology. First, the paper develops the phenomenological approach based on Husserl's writings to obtain a method for understanding mathematical practice. Then, to put forward a full-fledged ontology of mathematics, the phenomenological approach is complemented with social ontological considerations. The proposed ontological account sees mathematical objects as social constructions in the sense that they are products of culturally shared and historically developed practices. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Of Marriage and Mathematics: Inferentialism and Social Ontology.James Henry Collin - 2023 - Topoi 42 (1):247-257.
    The semantic inferentialist account of the social institution of semantic meaning can be naturally extended to account for social ontology. I argue here that semantic inferentialism provides a framework within which mathematical ontology can be understood as social ontology, and mathematical facts as socially instituted facts. I argue further that the semantic inferentialist framework provides resources to underpin at least some aspects of the objectivity of mathematics, even when the truth of mathematical claims is understood as socially instituted.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Practice, Fictionalism and Social Ontology.Jessica Carter - 2022 - Topoi 42 (1):211-220.
    From the perspective of mathematical practice, I examine positions claiming that mathematical objects are introduced by human agents. I consider in particular mathematical fictionalism and a recent position on social ontology formulated by Cole (2013, 2015). These positions are able to solve some of the challenges that non-realist positions face. I argue, however, that mathematical entities have features other than fictional characters and social institutions. I emphasise that the way mathematical objects are introduced is different and point to the multifaceted (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Introduction: From Social Ontology to Mathematical Practice, and Back Again.Paola Cantù & Italo Testa - 2023 - Topoi 42 (1):187-198.
    In this introductory essay we compare different strategies to study the possibility of applying philosophical theories of social ontology to mathematical practice and vice versa. Analyzing the contributions to the special issue Mathematical practice and social ontology, we distinguish four main strands: (1) to verify whether the very act of producing mathematical knowledge is an intersubjective activity; (2) to explain how the intersubjective nature of mathematics relates to mathematical objectivity; (3) to show how this intersubjectivity-based objectivity is the result of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Some Preliminary Notes on the Objectivity of Mathematics.Julian C. Cole - 2022 - Topoi 42 (1):235-245.
    I respond to a challenge by Dieterle (Philos Math 18:311–328, 2010) that requires mathematical social constructivists to complete two tasks: (i) counter the myth that socially constructed contents lack objectivity and (ii) provide a plausible social constructivist account of the objectivity of mathematical contents. I defend three theses: (a) the collective agreements responsible for there being socially constructed contents differ in ways that account for such contents possessing varying levels of objectivity, (b) to varying extents, the truth values of objective, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gila Sher. Epistemic Friction: An Essay on Knowledge, Truth, and Logic.Julian C. Cole - 2018 - Philosophia Mathematica 26 (1):136-148.
    © The Authors [2017]. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: [email protected] Sher believes that our basic epistemic situation — that we aim to gain knowledge of a highly complex world using our severely limited, yet highly resourceful, cognitive capacities — demands that all epistemic projects be undertaken within two broad constraints: epistemic freedom and epistemic friction. The former permits us to employ our cognitive resourcefulness fully while undertaking epistemic projects, while the latter requires that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Degrees of Objectivity? Mathemata and Social Objects.José Ferreirós - 2022 - Topoi 42 (1):199-209.
    A down-to-earth admission of abstract objects can be based on detailed explanation of where the objectivity of mathematics comes from, and how a ‘thin’ notion of object emerges from objective mathematical discourse or practices. We offer a sketch of arguments concerning both points, as a basis for critical scrutiny of the idea that mathematical and social objects are essentially of the same kind—which is criticized. Some authors have proposed that mathematical entities are indeed institutional objects, a product of our collective (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Social constructivism in mathematics? The promise and shortcomings of Julian Cole’s institutional account.Jenni Rytilä - 2021 - Synthese 199 (3-4):11517-11540.
    The core idea of social constructivism in mathematics is that mathematical entities are social constructs that exist in virtue of social practices, similar to more familiar social entities like institutions and money. Julian C. Cole has presented an institutional version of social constructivism about mathematics based on John Searle’s theory of the construction of the social reality. In this paper, I consider what merits social constructivism has and examine how well Cole’s institutional account meets the challenge of accounting for the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On a New Approach to Peirce’s Three-Value Propositional Logic.José Renato Salatiel - 2022 - Manuscrito 45 (4):79-106.
    In 1909, Peirce recorded in a few pages of his logic notebook some experiments with matrices for three-valued propositional logic. These notes are today recognized as one of the first attempts to create non-classical formal systems. However, besides the articles published by Turquette in the 1970s and 1980s, very little progress has been made toward a comprehensive understanding of the formal aspects of Peirce's triadic logic (as he called it). This paper aims to propose a new approach to Peirce's matrices (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • C.S. Peirce on Mathematical Practice: Objectivity and the Community of Inquirers.Maria Regina Brioschi - 2022 - Topoi 42 (1):221-233.
    What understanding of mathematical objectivity is promoted by Peirce’s pragmatism? Can Peirce’s theory help us to further comprehend the role of intersubjectivity in mathematics? This paper aims to answer such questions, with special reference to recent debates on mathematical practice, where Peirce is often quoted, although without a detailed scrutiny of his theses. In particular, the paper investigates the role of intersubjectivity in the constitution of mathematical objects according to Peirce. Generally speaking, this represents one of the key issues for (...)
    Download  
     
    Export citation  
     
    Bookmark