Switch to: References

Add citations

You must login to add citations.
  1. On Rank Not Only in Nsop Theories.Jan Dobrowolski & Daniel Max Hoffmann - forthcoming - Journal of Symbolic Logic:1-34.
    We introduce a family of local ranks $D_Q$ depending on a finite set Q of pairs of the form $(\varphi (x,y),q(y)),$ where $\varphi (x,y)$ is a formula and $q(y)$ is a global type. We prove that in any NSOP $_1$ theory these ranks satisfy some desirable properties; in particular, $D_Q(x=x)<\omega $ for any finite tuple of variables x and any Q, if $q\supseteq p$ is a Kim-forking extension of types, then $D_Q(q) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Divide and Conquer: Dividing Lines and Universality.Saharon Shelah - 2021 - Theoria 87 (2):259-348.
    We discuss dividing lines (in model theory) and some test questions, mainly the universality spectrum. So there is much on conjectures, problems and old results, mainly of the author and also on some recent results.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Three Surprising Instances of Dividing.Gabriel Conant & Alex Kruckman - forthcoming - Journal of Symbolic Logic:1-20.
    We give three counterexamples to the folklore claim that in an arbitrary theory, if a complete type p over a set B does not divide over $C\subseteq B$, then no extension of p to a complete type over $\operatorname {acl}(B)$ divides over C. Two of our examples are also the first known theories where all sets are extension bases for nonforking, but forking and dividing differ for complete types (answering a question of Adler). One example is an $\mathrm {NSOP}_1$ theory (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Independence over arbitrary sets in NSOP1 theories.Jan Dobrowolski, Byunghan Kim & Nicholas Ramsey - 2022 - Annals of Pure and Applied Logic 173 (2):103058.
    We study Kim-independence over arbitrary sets. Assuming that forking satisfies existence, we establish Kim's lemma for Kim-dividing over arbitrary sets in an NSOP1 theory. We deduce symmetry of Kim-independence and the independence theorem for Lascar strong types.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Generic expansion of an abelian variety by a subgroup.Christian D'Elbée - 2021 - Mathematical Logic Quarterly 67 (4):402-408.
    Let A be an abelian variety in an algebraically closed field of characteristic 0. We prove that the expansion of A by a generic divisible subgroup of A with the same torsion exists provided A has few algebraic endomorphisms, namely. The resulting theory is NSOP1 and not simple. Note that there exist abelian varieties A with of any genus.
    Download  
     
    Export citation  
     
    Bookmark   2 citations