Switch to: Citations

Add references

You must login to add references.
  1. Generic structures and simple theories.Z. Chatzidakis & A. Pillay - 1998 - Annals of Pure and Applied Logic 95 (1-3):71-92.
    We study structures equipped with generic predicates and/or automorphisms, and show that in many cases we obtain simple theories. We also show that a bounded PAC field is simple. 1998 Published by Elsevier Science B.V. All rights reserved.
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • On model-theoretic tree properties.Artem Chernikov & Nicholas Ramsey - 2016 - Journal of Mathematical Logic 16 (2):1650009.
    We study model theoretic tree properties and their associated cardinal invariants. In particular, we obtain a quantitative refinement of Shelah’s theorem for countable theories, show that [Formula: see text] is always witnessed by a formula in a single variable and that weak [Formula: see text] is equivalent to [Formula: see text]. Besides, we give a characterization of [Formula: see text] via a version of independent amalgamation of types and apply this criterion to verify that some examples in the literature are (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • ℵ0-Categorical, ℵ0-stable structures.Gregory Cherlin, Leo Harrington & Alistair H. Lachlan - 1985 - Annals of Pure and Applied Logic 28 (2):103-135.
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Generic expansion and Skolemization in NSOP 1 theories.Alex Kruckman & Nicholas Ramsey - 2018 - Annals of Pure and Applied Logic 169 (8):755-774.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Forking and Dividing in Henson Graphs.Gabriel Conant - 2017 - Notre Dame Journal of Formal Logic 58 (4):555-566.
    For n≥3, define Tn to be the theory of the generic Kn-free graph, where Kn is the complete graph on n vertices. We prove a graph-theoretic characterization of dividing in Tn and use it to show that forking and dividing are the same for complete types. We then give an example of a forking and nondividing formula. Altogether, Tn provides a counterexample to a question of Chernikov and Kaplan.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A geometric introduction to forking and thorn-forking.Hans Adler - 2009 - Journal of Mathematical Logic 9 (1):1-20.
    A ternary relation [Formula: see text] between subsets of the big model of a complete first-order theory T is called an independence relation if it satisfies a certain set of axioms. The primary example is forking in a simple theory, but o-minimal theories are also known to have an interesting independence relation. Our approach in this paper is to treat independence relations as mathematical objects worth studying. The main application is a better understanding of thorn-forking, which turns out to be (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Toward classifying unstable theories.Saharon Shelah - 1996 - Annals of Pure and Applied Logic 80 (3):229-255.
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Model theoretic properties of the Urysohn sphere.Gabriel Conant & Caroline Terry - 2016 - Annals of Pure and Applied Logic 167 (1):49-72.
    Download  
     
    Export citation  
     
    Bookmark   4 citations