Switch to: References

Add citations

You must login to add citations.
  1. The high/low hierarchy in the local structure of the image-enumeration degrees.Hristo Ganchev & Mariya Soskova - 2012 - Annals of Pure and Applied Logic 163 (5):547-566.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Enumeration 1-Genericity in the Local Enumeration Degrees. [REVIEW]Liliana Badillo, Charles M. Harris & Mariya I. Soskova - 2018 - Notre Dame Journal of Formal Logic 59 (4):461-489.
    We discuss a notion of forcing that characterizes enumeration 1-genericity, and we investigate the immunity, lowness, and quasiminimality properties of enumeration 1-generic sets and their degrees. We construct an enumeration operator Δ such that, for any A, the set ΔA is enumeration 1-generic and has the same jump complexity as A. We deduce from this and other recent results from the literature that not only does every degree a bound an enumeration 1-generic degree b such that a'=b', but also that, (...))
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)A high noncuppable $${\Sigma^0_2}$$ e-degree.Matthew B. Giorgi - 2008 - Archive for Mathematical Logic 47 (3):181-191.
    We construct a ${\Sigma^0_2}$ e-degree which is both high and noncuppable. Thus demonstrating the existence of a high e-degree whose predecessors are all properly ${\Sigma^0_2}$.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cupping and definability in the local structure of the enumeration degrees.Hristo Ganchev & Mariya I. Soskova - 2012 - Journal of Symbolic Logic 77 (1):133-158.
    We show that every splitting of ${0}_{\mathrm{e}}^{\prime }$ in the local structure of the enumeration degrees, $$\mathcal{G}_{e} , contains at least one low-cuppable member. We apply this new structural property to show that the classes of all $\mathcal{K}$ -pairs in $\mathcal{G}_{e}$ , all downwards properly ${\mathrm{\Sigma }}_{2}^{0}$ enumeration degrees and all upwards properly ${\mathrm{\Sigma }}_{2}^{0}$ enumeration degrees are first order definable in $\mathcal{G}_{e}$.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Properly [image] Enumeration Degrees and the High/Low Hierarchy.Matthew Giorgi, Andrea Sorbi & Yue Yang - 2006 - Journal of Symbolic Logic 71 (4):1125 - 1144.
    We show that there exist downwards properly $\Sigma _{2}^{0}$ (in fact noncuppable) e-degrees that are not high. We also show that every high e-degree bounds a noncuppable e-degree.
    Download  
     
    Export citation  
     
    Bookmark  
  • Initial segments of the enumeration degrees.Hristo Ganchev & Andrea Sorbi - 2016 - Journal of Symbolic Logic 81 (1):316-325.
    Using properties of${\cal K}$-pairs of sets, we show that every nonzero enumeration degreeabounds a nontrivial initial segment of enumeration degrees whose nonzero elements have all the same jump asa. Some consequences of this fact are derived, that hold in the local structure of the enumeration degrees, including: There is an initial segment of enumeration degrees, whose nonzero elements are all high; there is a nonsplitting high enumeration degree; every noncappable enumeration degree is high; every nonzero low enumeration degree can be (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the jump classes of noncuppable enumeration degrees.Charles M. Harris - 2011 - Journal of Symbolic Logic 76 (1):177 - 197.
    We prove that for every ${\mathrm{\Sigma }}_{2}^{0}$ enumeration degree b there exists a noncuppable ${\mathrm{\Sigma }}_{2}^{0}$ degree a > 0 e such that b′ ≤ e a′ and a″ ≤ e b″. This allows us to deduce, from results on the high/low jump hierarchy in the local Turing degrees and the jump preserving properties of the standard embedding l: D T → D e , that there exist ${\mathrm{\Sigma }}_{2}^{0}$ noncuppable enumeration degrees at every possible—i.e., above low₁—level of the high/low (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • In memoriam: Barry Cooper 1943–2015.Andrew Lewis-Pye & Andrea Sorbi - 2016 - Bulletin of Symbolic Logic 22 (3):361-365.
    Download  
     
    Export citation  
     
    Bookmark  
  • Badness and jump inversion in the enumeration degrees.Charles M. Harris - 2012 - Archive for Mathematical Logic 51 (3-4):373-406.
    This paper continues the investigation into the relationship between good approximations and jump inversion initiated by Griffith. Firstly it is shown that there is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^{0}_{2}}$$\end{document} set A whose enumeration degree a is bad—i.e. such that no set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X \in a}$$\end{document} is good approximable—and whose complement \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{A}}$$\end{document} has lowest possible jump, in other words (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Structural properties and Σ20 enumeration degrees.André Nies & Andrea Sorbi - 2000 - Journal of Symbolic Logic 65 (1):285-292.
    We prove that each Σ 0 2 set which is hypersimple relative to $\emptyset$ ' is noncuppable in the structure of the Σ 0 2 enumeration degrees. This gives a connection between properties of Σ 0 2 sets under inclusion and and the Σ 0 2 enumeration degrees. We also prove that some low non-computably enumerable enumeration degree contains no set which is simple relative to $\emptyset$ '.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The limitations of cupping in the local structure of the enumeration degrees.Mariya I. Soskova - 2010 - Archive for Mathematical Logic 49 (2):169-193.
    We prove that a sequence of sets containing representatives of cupping partners for every nonzero ${\Delta^0_2}$ enumeration degree cannot have a ${\Delta^0_2}$ enumeration. We also prove that no subclass of the ${\Sigma^0_2}$ enumeration degrees containing the nonzero 3-c.e. enumeration degrees can be cupped to ${\mathbf{0}_e'}$ by a single incomplete ${\Sigma^0_2}$ enumeration degree.
    Download  
     
    Export citation  
     
    Bookmark   2 citations