Switch to: References

Add citations

You must login to add citations.
  1. Counterpossibles in Science: The Case of Relative Computability.Matthias Jenny - 2018 - Noûs 52 (3):530-560.
    I develop a theory of counterfactuals about relative computability, i.e. counterfactuals such as 'If the validity problem were algorithmically decidable, then the halting problem would also be algorithmically decidable,' which is true, and 'If the validity problem were algorithmically decidable, then arithmetical truth would also be algorithmically decidable,' which is false. These counterfactuals are counterpossibles, i.e. they have metaphysically impossible antecedents. They thus pose a challenge to the orthodoxy about counterfactuals, which would treat them as uniformly true. What’s more, I (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Making AI Meaningful Again.Jobst Landgrebe & Barry Smith - 2021 - Synthese 198 (March):2061-2081.
    Artificial intelligence (AI) research enjoyed an initial period of enthusiasm in the 1970s and 80s. But this enthusiasm was tempered by a long interlude of frustration when genuinely useful AI applications failed to be forthcoming. Today, we are experiencing once again a period of enthusiasm, fired above all by the successes of the technology of deep neural networks or deep machine learning. In this paper we draw attention to what we take to be serious problems underlying current views of artificial (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The Deluge of Spurious Correlations in Big Data.Cristian S. Calude & Giuseppe Longo - 2016 - Foundations of Science 22 (3):595-612.
    Very large databases are a major opportunity for science and data analytics is a remarkable new field of investigation in computer science. The effectiveness of these tools is used to support a “philosophy” against the scientific method as developed throughout history. According to this view, computer-discovered correlations should replace understanding and guide prediction and action. Consequently, there will be no need to give scientific meaning to phenomena, by proposing, say, causal relations, since regularities in very large databases are enough: “with (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • (1 other version)The philosophy of computer science.Raymond Turner - 2013 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Forcing in proof theory.Jeremy Avigad - 2004 - Bulletin of Symbolic Logic 10 (3):305-333.
    Paul Cohen’s method of forcing, together with Saul Kripke’s related semantics for modal and intuitionistic logic, has had profound effects on a number of branches of mathematical logic, from set theory and model theory to constructive and categorical logic. Here, I argue that forcing also has a place in traditional Hilbert-style proof theory, where the goal is to formalize portions of ordinary mathematics in restricted axiomatic theories, and study those theories in constructive or syntactic terms. I will discuss the aspects (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Initial segments of the enumeration degrees.Hristo Ganchev & Andrea Sorbi - 2016 - Journal of Symbolic Logic 81 (1):316-325.
    Using properties of${\cal K}$-pairs of sets, we show that every nonzero enumeration degreeabounds a nontrivial initial segment of enumeration degrees whose nonzero elements have all the same jump asa. Some consequences of this fact are derived, that hold in the local structure of the enumeration degrees, including: There is an initial segment of enumeration degrees, whose nonzero elements are all high; there is a nonsplitting high enumeration degree; every noncappable enumeration degree is high; every nonzero low enumeration degree can be (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the jump classes of noncuppable enumeration degrees.Charles M. Harris - 2011 - Journal of Symbolic Logic 76 (1):177 - 197.
    We prove that for every ${\mathrm{\Sigma }}_{2}^{0}$ enumeration degree b there exists a noncuppable ${\mathrm{\Sigma }}_{2}^{0}$ degree a > 0 e such that b′ ≤ e a′ and a″ ≤ e b″. This allows us to deduce, from results on the high/low jump hierarchy in the local Turing degrees and the jump preserving properties of the standard embedding l: D T → D e , that there exist ${\mathrm{\Sigma }}_{2}^{0}$ noncuppable enumeration degrees at every possible—i.e., above low₁—level of the high/low (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Trial and error mathematics I: Dialectical and quasidialectical systems.Jacopo Amidei, Duccio Pianigiani, Luca San Mauro, Giulia Simi & Andrea Sorbi - 2016 - Review of Symbolic Logic 9 (2):299-324.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Trial and error mathematics II: Dialectical sets and quasidialectical sets, their degrees, and their distribution within the class of limit sets.Jacopo Amidei, Duccio Pianigiani, Luca San Mauro & Andrea Sorbi - 2016 - Review of Symbolic Logic 9 (4):810-835.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computability Results Used in Differential Geometry.Barbara F. Csima & Robert I. Soare - 2006 - Journal of Symbolic Logic 71 (4):1394 - 1410.
    Topologists Nabutovsky and Weinberger discovered how to embed computably enumerable (c.e.) sets into the geometry of Riemannian metrics modulo diffeomorphisms. They used the complexity of the settling times of the c.e. sets to exhibit a much greater complexity of the depth and density of local minima for the diameter function than previously imagined. Their results depended on the existence of certain sequences of c.e. sets, constructed at their request by Csima and Soare, whose settling times had the necessary dominating properties. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations