Switch to: References

Add citations

You must login to add citations.
  1. Logicism and Neologicism.Neil Tennant - 2013 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Which abstraction principles are acceptable? Some limitative results.Øystein Linnebo & Gabriel Uzquiano - 2009 - British Journal for the Philosophy of Science 60 (2):239-252.
    Neo-Fregean logicism attempts to base mathematics on abstraction principles. Since not all abstraction principles are acceptable, the neo-Fregeans need an account of which ones are. One of the most promising accounts is in terms of the notion of stability; roughly, that an abstraction principle is acceptable just in case it is satisfiable in all domains of sufficiently large cardinality. We present two counterexamples to stability as a sufficient condition for acceptability and argue that these counterexamples can be avoided only by (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)Focus restored: Comments on John MacFarlane.Bob Hale & Crispin Wright - 2009 - Synthese 170 (3):457 - 482.
    In “Double Vision Two Questions about the Neo-Fregean Programme”, John MacFarlane’s raises two main questions: (1) Why is it so important to neo-Fregeans to treat expressions of the form ‘the number of Fs’ as a species of singular term? What would be lost, if anything, if they were analysed instead as a type of quantifier-phrase, as on Russell’s Theory of Definite Descriptions? and (2) Granting—at least for the sake of argument—that Hume’s Principle may be used as a means of implicitly (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Robert Lorne Victor Hale FRSE May 4, 1945 – December 12, 2017.Roy T. Cook & Stewart Shapiro - 2018 - Philosophia Mathematica 26 (2):266-274.
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege Meets Aristotle: Points as Abstracts.Stewart Shapiro & Geoffrey Hellman - 2015 - Philosophia Mathematica:nkv021.
    There are a number of regions-based accounts of space/time, due to Whitehead, Roeper, Menger, Tarski, the present authors, and others. They all follow the Aristotelian theme that continua are not composed of points: each region has a proper part. The purpose of this note is to show how to recapture ‘points’ in such frameworks via Scottish neo-logicist abstraction principles. The results recapitulate some Aristotelian themes. A second agenda is to provide a new arena to help decide what is at stake (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • What is neologicism?Bernard Linsky & Edward N. Zalta - 2006 - Bulletin of Symbolic Logic 12 (1):60-99.
    In this paper, we investigate (1) what can be salvaged from the original project of "logicism" and (2) what is the best that can be done if we lower our sights a bit. Logicism is the view that "mathematics is reducible to logic alone", and there are a variety of reasons why it was a non-starter. We consider the various ways of weakening this claim so as to produce a "neologicism". Three ways are discussed: (1) expand the conception of logic (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Abstraction and identity.Roy T. Cook & Philip A. Ebert - 2005 - Dialectica 59 (2):121–139.
    A co-authored article with Roy T. Cook forthcoming in a special edition on the Caesar Problem of the journal Dialectica. We argue against the appeal to equivalence classes in resolving the Caesar Problem.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Frege meets dedekind: A neologicist treatment of real analysis.Stewart Shapiro - 2000 - Notre Dame Journal of Formal Logic 41 (4):335--364.
    This paper uses neo-Fregean-style abstraction principles to develop the integers from the natural numbers (assuming Hume’s principle), the rational numbers from the integers, and the real numbers from the rationals. The first two are first-order abstractions that treat pairs of numbers: (DIF) INT(a,b)=INT(c,d) ≡ (a+d)=(b+c). (QUOT) Q(m,n)=Q(p,q) ≡ (n=0 & q=0) ∨ (n≠0 & q≠0 & m⋅q=n⋅p). The development of the real numbers is an adaption of the Dedekind program involving “cuts” of rational numbers. Let P be a property (of (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Abstraction and set theory.Bob Hale - 2000 - Notre Dame Journal of Formal Logic 41 (4):379--398.
    The neo-Fregean program in the philosophy of mathematics seeks a foundation for a substantial part of mathematics in abstraction principles—for example, Hume’s Principle: The number of Fs D the number of Gs iff the Fs and Gs correspond one-one—which can be regarded as implicitly definitional of fundamental mathematical concepts—for example, cardinal number. This paper considers what kind of abstraction principle might serve as the basis for a neo- Fregean set theory. Following a brief review of the main difficulties confronting the (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • In Good Company? On Hume’s Principle and the Assignment of Numbers to Infinite Concepts.Paolo Mancosu - 2015 - Review of Symbolic Logic 8 (2):370-410.
    In a recent article, I have explored the historical, mathematical, and philosophical issues related to the new theory of numerosities. The theory of numerosities provides a context in which to assign numerosities to infinite sets of natural numbers in such a way as to preserve the part-whole principle, namely if a set A is properly included in B then the numerosity of A is strictly less than the numerosity of B. Numerosities assignments differ from the standard assignment of size provided (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Company Kept by Cut Abstraction (and its Relatives).S. Shapiro - 2011 - Philosophia Mathematica 19 (2):107-138.
    This article concerns the ongoing neo-logicist program in the philosophy of mathematics. The enterprise began life, in something close to its present form, with Crispin Wright’s seminal [1983]. It was bolstered when Bob Hale [1987] joined the fray on Wright’s behalf and it continues through many extensions, objections, and replies to objections . The overall plan is to develop branches of established mathematics using abstraction principles in the form: Formula where a and b are variables of a given type , (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Life on the Ship of Neurath: Mathematics in the Philosophy of Mathematics.Stewart Shapiro - 2012 - Croatian Journal of Philosophy 26 (2):11--27.
    Some central philosophical issues concern the use of mathematics in putatively non-mathematical endeavors. One such endeavor, of course, is philosophy, and the philosophy of mathematics is a key instance of that. The present article provides an idiosyncratic survey of the use of mathematical results to provide support or counter-support to various philosophical programs concerning the foundations of mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • Is unsaying polite?Berislav Žarnić - 2011 - In Majda Trobok, Nenad Miščević & Berislav Žarnić (eds.), Between Logic and Reality: Modeling Inference, Action and Understanding. Dordrecht and New York: Springer. pp. 201--224.
    This paper is divided in five sections. Section 11.1 sketches the history of the distinction between speech act with negative content and negated speech act, and gives a general dynamic interpretation for negated speech act. “Downdate semantics” for AGM contraction is introduced in Section 11.2. Relying on semantically interpreted contraction, Section 11.3 develops the dynamic semantics for constative and directive speech acts, and their external negations. The expressive completeness for the formal variants of natural language utterances, none of which is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation