Switch to: References

Citations of:

Abstraction and identity

Dialectica 59 (2):121–139 (2005)

Add citations

You must login to add citations.
  1. What is neologicism?Bernard Linsky & Edward N. Zalta - 2006 - Bulletin of Symbolic Logic 12 (1):60-99.
    In this paper, we investigate (1) what can be salvaged from the original project of "logicism" and (2) what is the best that can be done if we lower our sights a bit. Logicism is the view that "mathematics is reducible to logic alone", and there are a variety of reasons why it was a non-starter. We consider the various ways of weakening this claim so as to produce a "neologicism". Three ways are discussed: (1) expand the conception of logic (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • A Puzzle About Ontological Commitments.Philip A. Ebert - 2008 - Philosophia Mathematica 16 (2):209-226.
    This paper raises and then discusses a puzzle concerning the ontological commitments of mathematical principles. The main focus here is Hume's Principle—a statement that, embedded in second-order logic, allows for a deduction of the second-order Peano axioms. The puzzle aims to put pressure on so-called epistemic rejectionism, a position that rejects the analytic status of Hume's Principle. The upshot will be to elicit a new and very basic disagreement between epistemic rejectionism and the neo-Fregeans, defenders of the analytic status of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege on Identity and Identity Statements: 1884/1903.Matthias Schirn - forthcoming - History and Philosophy of Logic:1-22.
    In this essay, I first solve solve a conundrum and then deal with criteria of identity, Leibniz's definition of identity and Frege's adoption of it in his (failed) attempt to define the cardinality operator contextually in terms of Hume's Principle in Die Grundlagen der Arithmetik. I argue that Frege could have omitted the intermediate step of tentatively defining the cardinality operator in the context of an equation of the form ‘NxF(x) = NxG(x)'. Frege considers Leibniz's definition of identity to be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Identity and the Cognitive Value of Logical Equations in Frege’s Foundational Project.Matthias Schirn - 2023 - Notre Dame Journal of Formal Logic 64 (4):495-544.
    In this article, I first analyze and assess the epistemological and semantic status of canonical value-range equations in the formal language of Frege’s Grundgesetze der Arithmetik. I subsequently scrutinize the relation between (a) his informal, metalinguistic stipulation in Grundgesetze I, Section 3, and (b) its formal counterpart, which is Basic Law V. One point I argue for is that the stipulation in Section 3 was designed not only to fix the references of value-range names, but that it was probably also (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Caesar Problem — A Piecemeal Solution.J. P. Studd - 2023 - Philosophia Mathematica 31 (2):236-267.
    The Caesar problem arises for abstractionist views, which seek to secure reference for terms such as ‘the number of Xs’ or #X by stipulating the content of ‘unmixed’ identity contexts like ‘#X = #Y’. Frege objects that this stipulation says nothing about ‘mixed’ contexts such as ‘# X = Julius Caesar’. This article defends a neglected response to the Caesar problem: the content of mixed contexts is just as open to stipulation as that of unmixed contexts.
    Download  
     
    Export citation  
     
    Bookmark  
  • Abstraction without exceptions.Luca Zanetti - 2021 - Philosophical Studies 178 (10):3197-3216.
    Wright claims that “the epistemology of good abstraction principles should be assimilated to that of basic principles of logical inference”. In this paper I follow Wright’s recommendation, but I consider a different epistemology of logic, namely anti-exceptionalism. Anti-exceptionalism’s main contention is that logic is not a priori, and that the choice between rival logics should be based on abductive criteria such as simplicity, adequacy to the data, strength, fruitfulness, and consistency. This paper’s goal is to lay down the foundations for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Acquiring mathematical concepts: The viability of hypothesis testing.Stefan Buijsman - 2021 - Mind and Language 36 (1):48-61.
    Can concepts be acquired by testing hypotheses about these concepts? Fodor famously argued that this is not possible. Testing the correct hypothesis would require already possessing the concept. I argue that this does not generally hold for mathematical concepts. I discuss specific, empirically motivated, hypotheses for number concepts that can be tested without needing to possess the relevant number concepts. I also argue that one can test hypotheses about the identity conditions of other mathematical concepts, and then fix the application (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Redefining revolutions.Andrew Aberdein - 2017 - In Moti Mizrahi (ed.), The Kuhnian Image of Science: Time for a Decisive Transformation? London: Rowman & Littlefield. pp. 133–154.
    In their account of theory change in logic, Aberdein and Read distinguish 'glorious' from 'inglorious' revolutions--only the former preserves all 'the key components of a theory' [1]. A widespread view, expressed in these terms, is that empirical science characteristically exhibits inglorious revolutions but that revolutions in mathematics are at most glorious [2]. Here are three possible responses: 0. Accept that empirical science and mathematics are methodologically discontinuous; 1. Argue that mathematics can exhibit inglorious revolutions; 2. Deny that inglorious revolutions are (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the Varieties of Abstract Objects.James E. Davies - 2019 - Australasian Journal of Philosophy 97 (4):809-823.
    I reconcile the spatiotemporal location of repeatable artworks and impure sets with the non-location of natural numbers despite all three being varieties of abstract objects. This is possible because, while the identity conditions for all three can be given by abstraction principles, in the former two cases spatiotemporal location is a congruence for the equivalence relation featuring in the relevant principle, whereas in the latter it is not. I then generalize this to other ‘physical’ properties like shape, mass, and causal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Is Hume’s Principle analytic?Eamon Darnell & Aaron Thomas-Bolduc - 2018 - Synthese 198 (1):169-185.
    The question of the analyticity of Hume’s Principle (HP) is central to the neo-logicist project. We take on this question with respect to Frege’s definition of analyticity, which entails that a sentence cannot be analytic if it can be consistently denied within the sphere of a special science. We show that HP can be denied within non-standard analysis and argue that if HP is taken to depend on Frege’s definition of number, it isn’t analytic, and if HP is taken to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hyperintensional Foundations of Mathematical Platonism.David Elohim - manuscript
    This paper aims to provide hyperintensional foundations for mathematical platonism. I examine Hale and Wright's (2009) objections to the merits and need, in the defense of mathematical platonism and its epistemology, of the thesis of Necessitism. In response to Hale and Wright's objections to the role of epistemic and metaphysical modalities in providing justification for both the truth of abstraction principles and the success of mathematical predicate reference, I examine the Necessitist commitments of the abundant conception of properties endorsed by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hyperintensional Category Theory and Indefinite Extensibility.David Elohim - manuscript
    This essay endeavors to define the concept of indefinite extensibility in the setting of category theory. I argue that the generative property of indefinite extensibility for set-theoretic truths in category theory is identifiable with the Grothendieck Universe Axiom and the elementary embeddings in Vopenka's principle. The interaction between the interpretational and objective modalities of indefinite extensibility is defined via the epistemic interpretation of two-dimensional semantics. The semantics can be defined intensionally or hyperintensionally. By characterizing the modal profile of $\Omega$-logical validity, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mohan Ganesalingam. The Language of Mathematics: A Linguistic and Philosophical Investigation. FoLLI Publications on Logic, Language and Information. [REVIEW]Andrew Aberdein - 2017 - Philosophia Mathematica 25 (1):143–147.
    Download  
     
    Export citation  
     
    Bookmark  
  • Logical Indefinites.Jack Woods - 2014 - Logique Et Analyse -- Special Issue Edited by Julien Murzi and Massimiliano Carrara 227: 277-307.
    I argue that we can and should extend Tarski's model-theoretic criterion of logicality to cover indefinite expressions like Hilbert's ɛ operator, Russell's indefinite description operator η, and abstraction operators like 'the number of'. I draw on this extension to discuss the logical status of both abstraction operators and abstraction principles.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • logicism, intuitionism, and formalism - What has become of them?Sten Lindstr©œm, Erik Palmgren, Krister Segerberg & Viggo Stoltenberg-Hansen (eds.) - 2008 - Berlin, Germany: Springer.
    The period in the foundations of mathematics that started in 1879 with the publication of Frege's Begriffsschrift and ended in 1931 with Gödel's Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I can reasonably be called the classical period. It saw the development of three major foundational programmes: the logicism of Frege, Russell and Whitehead, the intuitionism of Brouwer, and Hilbert's formalist and proof-theoretic programme. In this period, there were also lively exchanges between the various schools culminating in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bad company tamed.Øystein Linnebo - 2009 - Synthese 170 (3):371 - 391.
    The neo-Fregean project of basing mathematics on abstraction principles faces “the bad company problem,” namely that a great variety of unacceptable abstraction principles are mixed in among the acceptable ones. In this paper I propose a new solution to the problem, based on the idea that individuation must take the form of a well-founded process. A surprising aspect of this solution is that every form of abstraction on concepts is permissible and that paradox is instead avoided by restricting what concepts (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Philosophy of Mathematics for the Masses : Extending the scope of the philosophy of mathematics.Stefan Buijsman - 2016 - Dissertation, Stockholm University
    One of the important discussions in the philosophy of mathematics, is that centered on Benacerraf’s Dilemma. Benacerraf’s dilemma challenges theorists to provide an epistemology and semantics for mathematics, based on their favourite ontology. This challenge is the point on which all philosophies of mathematics are judged, and clarifying how we might acquire mathematical knowledge is one of the main occupations of philosophers of mathematics. In this thesis I argue that this discussion has overlooked an important part of mathematics, namely mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • In Good Company? On Hume’s Principle and the Assignment of Numbers to Infinite Concepts.Paolo Mancosu - 2015 - Review of Symbolic Logic 8 (2):370-410.
    In a recent article, I have explored the historical, mathematical, and philosophical issues related to the new theory of numerosities. The theory of numerosities provides a context in which to assign numerosities to infinite sets of natural numbers in such a way as to preserve the part-whole principle, namely if a set A is properly included in B then the numerosity of A is strictly less than the numerosity of B. Numerosities assignments differ from the standard assignment of size provided (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • For Better and for Worse. Abstractionism, Good Company, and Pluralism.Andrea Sereni, Maria Paola Sforza Fogliani & Luca Zanetti - 2023 - Review of Symbolic Logic 16 (1):268-297.
    A thriving literature has developed over logical and mathematical pluralism – i.e. the views that several rival logical and mathematical theories can be equally correct. These have unfortunately grown separate; instead, they both could gain a great deal by a closer interaction. Our aim is thus to present some novel forms of abstractionist mathematical pluralism which can be modeled on parallel ways of substantiating logical pluralism (also in connection with logical anti-exceptionalism). To do this, we start by discussing the Good (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Identifying finite cardinal abstracts.Sean C. Ebels-Duggan - 2020 - Philosophical Studies 178 (5):1603-1630.
    Objects appear to fall into different sorts, each with their own criteria for identity. This raises the question of whether sorts overlap. Abstractionists about numbers—those who think natural numbers are objects characterized by abstraction principles—face an acute version of this problem. Many abstraction principles appear to characterize the natural numbers. If each abstraction principle determines its own sort, then there is no single subject-matter of arithmetic—there are too many numbers. That is, unless objects can belong to more than one sort. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Iteration one more time.Roy T. Cook - 2003 - Notre Dame Journal of Formal Logic 44 (2):63--92.
    A neologicist set theory based on an abstraction principle (NewerV) codifying the iterative conception of set is investigated, and its strength is compared to Boolos's NewV. The new principle, unlike NewV, fails to imply the axiom of replacement, but does secure powerset. Like NewV, however, it also fails to entail the axiom of infinity. A set theory based on the conjunction of these two principles is then examined. It turns out that this set theory, supplemented by a principle stating that (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Abstraction and Four Kinds of Invariance.Roy T. Cook - 2017 - Philosophia Mathematica 25 (1):3–25.
    Fine and Antonelli introduce two generalizations of permutation invariance — internal invariance and simple/double invariance respectively. After sketching reasons why a solution to the Bad Company problem might require that abstraction principles be invariant in one or both senses, I identify the most fine-grained abstraction principle that is invariant in each sense. Hume’s Principle is the most fine-grained abstraction principle invariant in both senses. I conclude by suggesting that this partially explains the success of Hume’s Principle, and the comparative lack (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Frege's Cardinals and Neo-Logicism.Roy T. Cook - 2016 - Philosophia Mathematica 24 (1):60-90.
    Gottlob Frege defined cardinal numbers in terms of value-ranges governed by the inconsistent Basic Law V. Neo-logicists have revived something like Frege's original project by introducing cardinal numbers as primitive objects, governed by Hume's Principle. A neo-logicist foundation for set theory, however, requires a consistent theory of value-ranges of some sort. Thus, it is natural to ask whether we can reconstruct the cardinal numbers by retaining Frege's definition and adopting an alternative consistent principle governing value-ranges. Given some natural assumptions regarding (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Which abstraction principles are acceptable? Some limitative results.Øystein Linnebo & Gabriel Uzquiano - 2009 - British Journal for the Philosophy of Science 60 (2):239-252.
    Neo-Fregean logicism attempts to base mathematics on abstraction principles. Since not all abstraction principles are acceptable, the neo-Fregeans need an account of which ones are. One of the most promising accounts is in terms of the notion of stability; roughly, that an abstraction principle is acceptable just in case it is satisfiable in all domains of sufficiently large cardinality. We present two counterexamples to stability as a sufficient condition for acceptability and argue that these counterexamples can be avoided only by (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Paolo Mancosu.*Abstraction and Infinity. [REVIEW]Roy T. Cook & Michael Calasso - 2019 - Philosophia Mathematica 27 (1):125-152.
    MancosuPaolo.* *ion and Infinity. Oxford University Press, 2016. ISBN: 978-0-19-872462-9. Pp. viii + 222.
    Download  
     
    Export citation  
     
    Bookmark