Switch to: References

Add citations

You must login to add citations.
  1. Do Accelerating Turing Machines Compute the Uncomputable?B. Jack Copeland & Oron Shagrir - 2011 - Minds and Machines 21 (2):221-239.
    Accelerating Turing machines have attracted much attention in the last decade or so. They have been described as “the work-horse of hypercomputation” (Potgieter and Rosinger 2010: 853). But do they really compute beyond the “Turing limit”—e.g., compute the halting function? We argue that the answer depends on what you mean by an accelerating Turing machine, on what you mean by computation, and even on what you mean by a Turing machine. We show first that in the current literature the term (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Super turing-machines.B. Jack Copeland - 1998 - Complexity 4 (1):30-32.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The Explanatory Role of Computation in Cognitive Science.Nir Fresco - 2012 - Minds and Machines 22 (4):353-380.
    Which notion of computation (if any) is essential for explaining cognition? Five answers to this question are discussed in the paper. (1) The classicist answer: symbolic (digital) computation is required for explaining cognition; (2) The broad digital computationalist answer: digital computation broadly construed is required for explaining cognition; (3) The connectionist answer: sub-symbolic computation is required for explaining cognition; (4) The computational neuroscientist answer: neural computation (that, strictly, is neither digital nor analogue) is required for explaining cognition; (5) The extreme (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Peculiarities in Mind; Or, on the Absence of Darwin.Tanya de Villiers-Botha - 2011 - South African Journal of Philosophy 30 (3):282-302.
    A key failing in contemporary philosophy of mind is the lack of attention paid to evolutionary theory in its research projects. Notably, where evolution is incorporated into the study of mind, the work being done is often described as philosophy of cognitive science rather than philosophy of mind. Even then, whereas possible implications of the evolution of human cognition are taken more seriously within the cognitive sciences and the philosophy of cognitive science, its relevance for cognitive science has only been (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Possibilities of Hypercomputing Supertasks.Vincent C. Müller - 2011 - Minds and Machines 21 (1):83-96.
    This paper investigates the view that digital hypercomputing is a good reason for rejection or re-interpretation of the Church-Turing thesis. After suggestion that such re-interpretation is historically problematic and often involves attack on a straw man (the ‘maximality thesis’), it discusses proposals for digital hypercomputing with Zeno-machines , i.e. computing machines that compute an infinite number of computing steps in finite time, thus performing supertasks. It argues that effective computing with Zeno-machines falls into a dilemma: either they are specified such (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The many forms of hypercomputation.Toby Ord - 178 - Journal of Applied Mathematics and Computation 178:142-153.
    This paper surveys a wide range of proposed hypermachines, examining the resources that they require and the capabilities that they possess. 2005 Elsevier Inc. All rights reserved.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Symbol grounding in computational systems: A paradox of intentions.Vincent C. Müller - 2009 - Minds and Machines 19 (4):529-541.
    The paper presents a paradoxical feature of computational systems that suggests that computationalism cannot explain symbol grounding. If the mind is a digital computer, as computationalism claims, then it can be computing either over meaningful symbols or over meaningless symbols. If it is computing over meaningful symbols its functioning presupposes the existence of meaningful symbols in the system, i.e. it implies semantic nativism. If the mind is computing over meaningless symbols, no intentional cognitive processes are available prior to symbol grounding. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What's new here?Bruce Mangan - 1999 - Behavioral and Brain Sciences 22 (1):160-161.
    O'Brien & Opie's (O&O's) theory demands a view of unconscious processing that is incompatible with virtually all current PDP models of neural activity. Relative to the alternatives, the theory is closer to an AI than a parallel distributed processing (PDP) perspective, and its treatment of phenomenology is ad hoc. It raises at least one important question: Could features of network relaxation be the “switch” that turns an unconscious into a conscious network?
    Download  
     
    Export citation  
     
    Bookmark  
  • Accelerating Turing machines.B. Jack Copeland - 2002 - Minds and Machines 12 (2):281-300.
    Accelerating Turing machines are Turing machines of a sort able to perform tasks that are commonly regarded as impossible for Turing machines. For example, they can determine whether or not the decimal representation of contains n consecutive 7s, for any n; solve the Turing-machine halting problem; and decide the predicate calculus. Are accelerating Turing machines, then, logically impossible devices? I argue that they are not. There are implications concerning the nature of effective procedures and the theoretical limits of computability. Contrary (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Beyond the universal Turing machine.Jack Copeland - 1999 - Australasian Journal of Philosophy 77 (1):46-67.
    We describe an emerging field, that of nonclassical computability and nonclassical computing machinery. According to the nonclassicist, the set of well-defined computations is not exhausted by the computations that can be carried out by a Turing machine. We provide an overview of the field and a philosophical defence of its foundations.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • What is a Computer? A Survey.William J. Rapaport - 2018 - Minds and Machines 28 (3):385-426.
    A critical survey of some attempts to define ‘computer’, beginning with some informal ones, then critically evaluating those of three philosophers, and concluding with an examination of whether the brain and the universe are computers.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Hypercomputation and the Physical Church‐Turing Thesis.Paolo Cotogno - 2003 - British Journal for the Philosophy of Science 54 (2):181-223.
    A version of the Church-Turing Thesis states that every effectively realizable physical system can be simulated by Turing Machines (‘Thesis P’). In this formulation the Thesis appears to be an empirical hypothesis, subject to physical falsification. We review the main approaches to computation beyond Turing definability (‘hypercomputation’): supertask, non-well-founded, analog, quantum, and retrocausal computation. The conclusions are that these models reduce to supertasks, i.e. infinite computation, and that even supertasks are no solution for recursive incomputability. This yields that the realization (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • The instructional information processing account of digital computation.Nir Fresco & Marty J. Wolf - 2014 - Synthese 191 (7):1469-1492.
    What is nontrivial digital computation? It is the processing of discrete data through discrete state transitions in accordance with finite instructional information. The motivation for our account is that many previous attempts to answer this question are inadequate, and also that this account accords with the common intuition that digital computation is a type of information processing. We use the notion of reachability in a graph to defend this characterization in memory-based systems and underscore the importance of instructional information for (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Concrete Digital Computation: What Does it Take for a Physical System to Compute? [REVIEW]Nir Fresco - 2011 - Journal of Logic, Language and Information 20 (4):513-537.
    This paper deals with the question: what are the key requirements for a physical system to perform digital computation? Time and again cognitive scientists are quick to employ the notion of computation simpliciter when asserting basically that cognitive activities are computational. They employ this notion as if there was or is a consensus on just what it takes for a physical system to perform computation, and in particular digital computation. Some cognitive scientists in referring to digital computation simply adhere to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • What about the unconscious?Chris Mortensen - 1999 - Behavioral and Brain Sciences 22 (1):162-162.
    O'Brien & Opie do not address the question of the psychotherapeutic role of unconscious representational states such as beliefs. A dilemma is proposed: if they accept the legitimacy of such states then they should modify what they say about dissociation, and if they do not, they owe us an account of why.
    Download  
     
    Export citation  
     
    Bookmark  
  • Physical Computation: How General are Gandy’s Principles for Mechanisms?B. Jack Copeland & Oron Shagrir - 2007 - Minds and Machines 17 (2):217-231.
    What are the limits of physical computation? In his ‘Church’s Thesis and Principles for Mechanisms’, Turing’s student Robin Gandy proved that any machine satisfying four idealised physical ‘principles’ is equivalent to some Turing machine. Gandy’s four principles in effect define a class of computing machines (‘Gandy machines’). Our question is: What is the relationship of this class to the class of all (ideal) physical computing machines? Gandy himself suggests that the relationship is identity. We do not share this view. We (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Analogue Models and Universal Machines. Paradigms of Epistemic Transparency in Artificial Intelligence.Hajo Greif - 2022 - Minds and Machines 32 (1):111-133.
    The problem of epistemic opacity in Artificial Intelligence is often characterised as a problem of intransparent algorithms that give rise to intransparent models. However, the degrees of transparency of an AI model should not be taken as an absolute measure of the properties of its algorithms but of the model’s degree of intelligibility to human users. Its epistemically relevant elements are to be specified on various levels above and beyond the computational one. In order to elucidate this claim, I first (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Computation and Early Chinese Thought.Carl M. Johnson - 2012 - Asian Philosophy 22 (2):143-159.
    In recent years, it has become conventional to think of the world using metaphors taken from computation. Some have even suggested that the world itself is a kind of cosmological computer. In order to compare these suggestions to the process interpretation of early Daoism, I define computation as ?a process in which the fact that one system is rule governed is used to make reliable correlations to another rule governed system? and apply this definition to Yijing divination. I find that (...)
    Download  
     
    Export citation  
     
    Bookmark