Switch to: References

Citations of:

Argumentation and the mathematical process

In G. Kampis, L: Kvasz & M. Stöltzner (eds.), Appraising Lakatos: Mathematics, Methodology and the Man. Kluwer Academic Publishers. pp. 115--138 (2002)

Add citations

You must login to add citations.
  1. What is dialectical philosophy of mathematics?Brendan Larvor - 2001 - Philosophia Mathematica 9 (2):212-229.
    The late Imre Lakatos once hoped to found a school of dialectical philosophy of mathematics. The aim of this paper is to ask what that might possibly mean. But Lakatos's philosophy has serious shortcomings. The paper elaborates a conception of dialectical philosophy of mathematics that repairs these defects and considers the work of three philosophers who in some measure fit the description: Yehuda Rav, Mary Leng and David Corfield.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Lakatosian and Euclidean populations: a pluralist approach to conceptual change in mathematics.Matteo De Benedetto - 2023 - European Journal for Philosophy of Science 13 (3):1-25.
    Lakatos’ (Lakatos, 1976) model of mathematical conceptual change has been criticized for neglecting the diversity of dynamics exhibited by mathematical concepts. In this work, I will propose a pluralist approach to mathematical change that re-conceptualizes Lakatos’ model of proofs and refutations as an ideal dynamic that mathematical concepts can exhibit to different degrees with respect to multiple dimensions. Drawing inspiration from Godfrey-Smith’s (Godfrey-Smith, 2009) population-based Darwinism, my proposal will be structured around the notion of a conceptual population, the opposition between (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Frameworks, models, and case studies: a new methodology for studying conceptual change in science and philosophy.Matteo De Benedetto - 2022 - Dissertation, Ludwig Maximilians Universität, München
    This thesis focuses on models of conceptual change in science and philosophy. In particular, I developed a new bootstrapping methodology for studying conceptual change, centered around the formalization of several popular models of conceptual change and the collective assessment of their improved formal versions via nine evaluative dimensions. Among the models of conceptual change treated in the thesis are Carnap’s explication, Lakatos’ concept-stretching, Toulmin’s conceptual populations, Waismann’s open texture, Mark Wilson’s patches and facades, Sneed’s structuralism, and Paul Thagard’s conceptual revolutions. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Argument of Mathematics.Andrew Aberdein & Ian J. Dove (eds.) - 2013 - Dordrecht, Netherland: Springer.
    Written by experts in the field, this volume presents a comprehensive investigation into the relationship between argumentation theory and the philosophy of mathematical practice. Argumentation theory studies reasoning and argument, and especially those aspects not addressed, or not addressed well, by formal deduction. The philosophy of mathematical practice diverges from mainstream philosophy of mathematics in the emphasis it places on what the majority of working mathematicians actually do, rather than on mathematical foundations. -/- The book begins by first challenging the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The dialectical tier of mathematical proof.Andrew Aberdein - 2011 - In Frank Zenker (ed.), Argumentation: Cognition & Community. Proceedings of the 9th International Conference of the Ontario Society for the Study of Argumentation (OSSA), May 18--21, 2011. OSSA.
    Ralph Johnson argues that mathematical proofs lack a dialectical tier, and thereby do not qualify as arguments. This paper argues that, despite this disavowal, Johnson’s account provides a compelling model of mathematical proof. The illative core of mathematical arguments is held to strict standards of rigour. However, compliance with these standards is itself a matter of argument, and susceptible to challenge. Hence much actual mathematical practice takes place in the dialectical tier.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Phenomenology and mathematical practice.Mary Leng - 2002 - Philosophia Mathematica 10 (1):3-14.
    A phenomenological approach to mathematical practice is sketched out, and some problems with this sort of approach are considered. The approach outlined takes mathematical practices as its data, and seeks to provide an empirically adequate philosophy of mathematics based on observation of these practices. Some observations are presented, based on two case studies of some research into the classification of C*-algebras. It is suggested that an anti-realist account of mathematics could be developed on the basis of these and other studies, (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Proof-analysis and continuity.Michael Otte - 2004 - Foundations of Science 11 (1-2):121-155.
    During the first phase of Greek mathematics a proof consisted in showing or making visible the truth of a statement. This was the epagogic method. This first phase was followed by an apagogic or deductive phase. During this phase visual evidence was rejected and Greek mathematics became a deductive system. Now epagoge and apagoge, apart from being distinguished, roughly according to the modern distinction between inductive and deductive procedures, were also identified on account of the conception of generality as continuity. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations