Switch to: References

Add citations

You must login to add citations.
  1. Gauge symmetry and the Theta vacuum.Richard Healey - 2009 - In Mauricio Suárez, Mauro Dorato & Miklós Rédei (eds.), EPSA Philosophical Issues in the Sciences: Launch of the European Philosophy of Science Association. Dordrecht, Netherland: Springer. pp. 105--116.
    According to conventional wisdom, local gauge symmetry is not a symmetry of nature, but an artifact of how our theories represent nature. But a study of the so-called theta-vacuum appears to refute this view. The ground state of a quantized non-Abelian Yang-Mills gauge theory is characterized by a real-valued, dimensionless parameter theta—a fundamental new constant of nature. The structure of this vacuum state is often said to arise from a degeneracy of the vacuum of the corresponding classical theory, which degeneracy (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Philosophy of Mathematical Practice — Motivations, Themes and Prospects†.Jessica Carter - 2019 - Philosophia Mathematica 27 (1):1-32.
    A number of examples of studies from the field ‘The Philosophy of Mathematical Practice’ (PMP) are given. To characterise this new field, three different strands are identified: an agent-based, a historical, and an epistemological PMP. These differ in how they understand ‘practice’ and which assumptions lie at the core of their investigations. In the last part a general framework, capturing some overall structure of the field, is proposed.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Two Types of Refutation in Philosophical Argumentation.Catarina Dutilh Novaes - 2022 - Argumentation 36 (4):493-510.
    In this paper, I highlight the significance of practices of _refutation_ in philosophical inquiry, that is, practices of showing that a claim, person or theory is wrong. I present and contrast two prominent approaches to philosophical refutation: refutation in ancient Greek dialectic (_elenchus_), in its Socratic variant as described in Plato’s dialogues, and as described in Aristotle’s logical texts; and the practice of providing counterexamples to putative definitions familiar from twentieth century analytic philosophy, focusing on the so-called Gettier problem. Moreover, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Social constructivism in mathematics? The promise and shortcomings of Julian Cole’s institutional account.Jenni Rytilä - 2021 - Synthese 199 (3-4):11517-11540.
    The core idea of social constructivism in mathematics is that mathematical entities are social constructs that exist in virtue of social practices, similar to more familiar social entities like institutions and money. Julian C. Cole has presented an institutional version of social constructivism about mathematics based on John Searle’s theory of the construction of the social reality. In this paper, I consider what merits social constructivism has and examine how well Cole’s institutional account meets the challenge of accounting for the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Categories for the working mathematician: making the impossible possible.Jessica Carter - 2008 - Synthese 162 (1):1-13.
    This paper discusses the notion of necessity in the light of results from contemporary mathematical practice. Two descriptions of necessity are considered. According to the first, necessarily true statements are true because they describe ‘unchangeable properties of unchangeable objects’. The result that I present is argued to provide a counterexample to this description, as it concerns a case where objects are moved from one category to another in order to change the properties of these objects. The second description concerns necessary (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Formulation and Justification of Mathematical Definitions Illustrated By Deterministic Chaos.Charlotte Werndl - 2009 - In Mauricio Suárez, Mauro Dorato & Miklós Rédei (eds.), EPSA Philosophical Issues in the Sciences: Launch of the European Philosophy of Science Association. Dordrecht, Netherland: Springer. pp. 279-288.
    The general theme of this article is the actual practice of how definitions are justified and formulated in mathematics. The theoretical insights of this article are based on a case study of topological definitions of chaos. After introducing this case study, I identify the three kinds of justification which are important for topological definitions of chaos: natural-world-justification, condition-justification and redundancy-justification. To my knowledge, the latter two have not been identified before. I argue that these three kinds of justification are widespread (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Frameworks, models, and case studies: a new methodology for studying conceptual change in science and philosophy.Matteo De Benedetto - 2022 - Dissertation, Ludwig Maximilians Universität, München
    This thesis focuses on models of conceptual change in science and philosophy. In particular, I developed a new bootstrapping methodology for studying conceptual change, centered around the formalization of several popular models of conceptual change and the collective assessment of their improved formal versions via nine evaluative dimensions. Among the models of conceptual change treated in the thesis are Carnap’s explication, Lakatos’ concept-stretching, Toulmin’s conceptual populations, Waismann’s open texture, Mark Wilson’s patches and facades, Sneed’s structuralism, and Paul Thagard’s conceptual revolutions. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Objects and Processes in Mathematical Practice.Uwe V. Riss - 2011 - Foundations of Science 16 (4):337-351.
    In this paper it is argued that the fundamental difference of the formal and the informal position in the philosophy of mathematics results from the collision of an object and a process centric perspective towards mathematics. This collision can be overcome by means of dialectical analysis, which shows that both perspectives essentially depend on each other. This is illustrated by the example of mathematical proof and its formal and informal nature. A short overview of the employed materialist dialectical approach is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Justifying definitions in mathematics—going beyond Lakatos.Charlotte Werndl - 2009 - Philosophia Mathematica 17 (3):313-340.
    This paper addresses the actual practice of justifying definitions in mathematics. First, I introduce the main account of this issue, namely Lakatos's proof-generated definitions. Based on a case study of definitions of randomness in ergodic theory, I identify three other common ways of justifying definitions: natural-world justification, condition justification, and redundancy justification. Also, I clarify the interrelationships between the different kinds of justification. Finally, I point out how Lakatos's ideas are limited: they fail to show how various kinds of justification (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Idealization in Cassirer's philosophy of mathematics.Thomas Mormann - 2008 - Philosophia Mathematica 16 (2):151 - 181.
    The notion of idealization has received considerable attention in contemporary philosophy of science but less in philosophy of mathematics. An exception was the ‘critical idealism’ of the neo-Kantian philosopher Ernst Cassirer. According to Cassirer the methodology of idealization plays a central role for mathematics and empirical science. In this paper it is argued that Cassirer's contributions in this area still deserve to be taken into account in the current debates in philosophy of mathematics. For extremely useful criticisms on earlier versions (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Prolegomena to virtue-theoretic studies in the philosophy of mathematics.James V. Martin - 2020 - Synthese 199 (1-2):1409-1434.
    Additional theorizing about mathematical practice is needed in order to ground appeals to truly useful notions of the virtues in mathematics. This paper aims to contribute to this theorizing, first, by characterizing mathematical practice as being epistemic and “objectual” in the sense of Knorr Cetina The practice turn in contemporary theory, Routledge, London, 2001). Then, it elaborates a MacIntyrean framework for extracting conceptions of the virtues related to mathematical practice so understood. Finally, it makes the case that Wittgenstein’s methodology for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Moral particularism and scientific practice.Brendan Larvor - 2008 - Metaphilosophy 39 (4-5):492-507.
    Abstract: Particularism is usually understood as a position in moral philosophy. In fact, it is a view about all reasons, not only moral reasons. Here, I show that particularism is a familiar and controversial position in the philosophy of science and mathematics. I then argue for particularism with respect to scientific and mathematical reasoning. This has a bearing on moral particularism, because if particularism about moral reasons is true, then particularism must be true with respect to reasons of any sort, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Critique of a Formalist-Mechanist Version of the Justification of Arguments in Mathematicians' Proof Practices.Yehuda Rav - 2007 - Philosophia Mathematica 15 (3):291-320.
    In a recent article, Azzouni has argued in favor of a version of formalism according to which ordinary mathematical proofs indicate mechanically checkable derivations. This is taken to account for the quasi-universal agreement among mathematicians on the validity of their proofs. Here, the author subjects these claims to a critical examination, recalls the technical details about formalization and mechanical checking of proofs, and illustrates the main argument with aanalysis of examples. In the author's view, much of mathematical reasoning presents genuine (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • On the Contemporary Practice of Philosophy of Mathematics.Colin Jakob Rittberg - 2019 - Acta Baltica Historiae Et Philosophiae Scientiarum 7 (1):5-26.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Mathematical naturalism: Origins, guises, and prospects. [REVIEW]Bart Van Kerkhove - 2006 - Foundations of Science 11 (1-2):5-39.
    During the first half of the twentieth century, mainstream answers to the foundational crisis, mainly triggered by Russell and Gödel, remained largely perfectibilist in nature. Along with a general naturalist wave in the philosophy of science, during the second half of that century, this idealist picture was finally challenged and traded in for more realist ones. Next to the necessary preliminaries, the present paper proposes a structured view of various philosophical accounts of mathematics indebted to this general idea, laying the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mathematical Naturalism: Origins, Guises, and Prospects.Bart Kerkhove - 2006 - Foundations of Science 11 (1):5-39.
    During the first half of the twentieth century, mainstream answers to the foundational crisis, mainly triggered by Russell and Gödel, remained largely perfectibilist in nature. Along with a general naturalist wave in the philosophy of science, during the second half of that century, this idealist picture was finally challenged and traded in for more realist ones. Next to the necessary preliminaries, the present paper proposes a structured view of various philosophical accounts of mathematics indebted to this general idea, laying the (...)
    Download  
     
    Export citation  
     
    Bookmark