Switch to: References

Add citations

You must login to add citations.
  1. Existential-Import Mathematics.John Corcoran & Hassan Masoud - 2015 - Bulletin of Symbolic Logic 21 (1):1-14.
    First-order logic haslimitedexistential import: the universalized conditional ∀x[S(x) → P(x)] implies its corresponding existentialized conjunction ∃x[S(x) & P(x)] insome but not allcases. We prove theExistential-Import Equivalence:∀x[S(x) → P(x)] implies ∃x[S(x) & P(x)] iff ∃xS(x) is logically true.The antecedent S(x) of the universalized conditional alone determines whether the universalized conditionalhas existential import: implies its corresponding existentialized conjunction.Apredicateis a formula having onlyxfree. Anexistential-importpredicate Q(x) is one whose existentialization, ∃xQ(x), is logically true; otherwise, Q(x) isexistential-import-freeor simplyimport-free. Existential-import predicates are also said to beimport-carrying.How (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Existential Import Today: New Metatheorems; Historical, Philosophical, and Pedagogical Misconceptions.John Corcoran & Hassan Masoud - 2015 - History and Philosophy of Logic 36 (1):39-61.
    Contrary to common misconceptions, today's logic is not devoid of existential import: the universalized conditional ∀ x [S→ P] implies its corresponding existentialized conjunction ∃ x [S & P], not in all cases, but in some. We characterize the proexamples by proving the Existential-Import Equivalence: The antecedent S of the universalized conditional alone determines whether the universalized conditional has existential import, i.e. whether it implies its corresponding existentialized conjunction.A predicate is an open formula having only x free. An existential-import predicate (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Philosophical Problems of Foundations of Logic.Alexander S. Karpenko - 2014 - Studia Humana 3 (1):13-26.
    In the paper the following questions are discussed: What is logical consequence? What are logical constants? What is a logical system? What is logical pluralism? What is logic? In the conclusion, the main tendencies of development of modern logic are pointed out.
    Download  
     
    Export citation  
     
    Bookmark  
  • Carnap’s Early Semantics.Georg Schiemer - 2013 - Erkenntnis 78 (3):487-522.
    This paper concerns Carnap’s early contributions to formal semantics in his work on general axiomatics between 1928 and 1936. Its main focus is on whether he held a variable domain conception of models. I argue that interpreting Carnap’s account in terms of a fixed domain approach fails to describe his premodern understanding of formal models. By drawing attention to the second part of Carnap’s unpublished manuscript Untersuchungen zur allgemeinen Axiomatik, an alternative interpretation of the notions ‘model’, ‘model extension’ and ‘submodel’ (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Is the Principle of Contradiction a Consequence of $$x^{2}=x$$ x 2 = x?Jean-Yves Beziau - 2018 - Logica Universalis 12 (1-2):55-81.
    According to Boole it is possible to deduce the principle of contradiction from what he calls the fundamental law of thought and expresses as \. We examine in which framework this makes sense and up to which point it depends on notation. This leads us to make various comments on the history and philosophy of modern logic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations