Switch to: References

Citations of:

Weak Necessity on Weak Kleene Matrices

In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 73-90 (1998)

Add citations

You must login to add citations.
  1. The (Greatest) Fragment of Classical Logic that Respects the Variable-Sharing Principle (in the FMLA-FMLA Framework).Damian E. Szmuc - 2021 - Bulletin of the Section of Logic 50 (4):421-453.
    We examine the set of formula-to-formula valid inferences of Classical Logic, where the premise and the conclusion share at least a propositional variable in common. We review the fact, already proved in the literature, that such a system is identical to the first-degree entailment fragment of R. Epstein's Relatedness Logic, and that it is a non-transitive logic of the sort investigated by S. Frankowski and others. Furthermore, we provide a semantics and a calculus for this logic. The semantics is defined (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Semantical analysis of weak Kleene logics.Roberto Ciuni & Massimiliano Carrara - 2019 - Journal of Applied Non-Classical Logics 29 (1):1-36.
    This paper presents a semantical analysis of the Weak Kleene Logics Kw3 and PWK from the tradition of Bochvar and Halldén. These are three-valued logics in which a formula takes the third value if at least one of its components does. The paper establishes two main results: a characterisation result for the relation of logical con- sequence in PWK – that is, we individuate necessary and sufficient conditions for a set.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Proof Theory of Paraconsistent Weak Kleene Logic.Francesco Paoli & Michele Pra Baldi - 2020 - Studia Logica 108 (4):779-802.
    Paraconsistent Weak Kleene Logic is the 3-valued propositional logic defined on the weak Kleene tables and with two designated values. Most of the existing proof systems for PWK are characterised by the presence of linguistic restrictions on some of their rules. This feature can be seen as a shortcoming. We provide a cut-free calculus for PWK that is devoid of such provisos. Moreover, we introduce a Priest-style tableaux calculus for PWK.
    Download  
     
    Export citation  
     
    Bookmark   16 citations