Switch to: References

Add citations

You must login to add citations.
  1. Black Hole Paradoxes: A Unified Framework for Information Loss.Saakshi Dulani - 2024 - Dissertation, University of Geneva
    The black hole information loss paradox is a catch-all term for a family of puzzles related to black hole evaporation. For almost 50 years, the quest to elucidate the implications of black hole evaporation has not only sustained momentum, but has also become increasingly populated with proposals that seem to generate more questions than they purport to answer. Scholars often neglect to acknowledge ongoing discussions within black hole thermodynamics and statistical mechanics when analyzing the paradox, including the interpretation of Bekenstein-Hawking (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Confirmation by analogy.Francesco Nappo - 2022 - Synthese 200 (1):1-26.
    This paper proposes a framework for representing in Bayesian terms the idea that analogical arguments of various degrees of strength may provide inductive support to yet untested scientific hypotheses. On this account, contextual information plays a crucial role in determining whether, and to what extent, a given similarity or dissimilarity between source and target may confirm an empirical hypothesis over a rival one. In addition to showing confirmation by analogy compatible with the adoption of a Bayesian standpoint, the proposal outlined (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Analogy and Composition in Early Nineteenth-Century Chemistry The Case of Aluminium.Sarah N. Hijmans - 2022 - European Journal for Philosophy of Science 12 (1):1-17.
    Around fifteen years before the chemical substance alumina could be decomposed in the laboratory, it was identified as a compound and predicted to contain a new element called ‘aluminium’. Using this episode from early nineteenth-century chemistry as a case study for the use of analogical reasoning in science, this paper examines how chemists relied on chemical classifications for the prediction of aluminium. I argue that chemists supplemented direct evidence of chemical decomposition with analogical inferences in order to evaluate the composition (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What can bouncing oil droplets tell us about quantum mechanics?Peter W. Evans & Karim P. Y. Thébault - 2020 - European Journal for Philosophy of Science 10 (3):1-32.
    A recent series of experiments have demonstrated that a classical fluid mechanical system, constituted by an oil droplet bouncing on a vibrating fluid surface, can be induced to display a number of behaviours previously considered to be distinctly quantum. To explain this correspondence it has been suggested that the fluid mechanical system provides a single-particle classical model of de Broglie’s idiosyncratic ‘double solution’ pilot wave theory of quantum mechanics. In this paper we assess the epistemic function of the bouncing oil (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Limits of Experimental Knowledge.Peter Evans & Karim P. Y. Thebault - 2020 - Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378 (2177).
    To demarcate the limits of experimental knowledge, we probe the limits of what might be called an experiment. By appeal to examples of scientific practice from astrophysics and analogue gravity, we demonstrate that the reliability of knowledge regarding certain phenomena gained from an experiment is not circumscribed by the manipulability or accessibility of the target phenomena. Rather, the limits of experimental knowledge are set by the extent to which strategies for what we call ‘inductive triangulation’ are available: that is, the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Lost horizon? – modeling black holes in string theory.Nick Huggett & Keizo Matsubara - 2021 - European Journal for Philosophy of Science 11 (3):1-19.
    The modeling of black holes is an important desideratum for any quantum theory of gravity. Not only is a classical black hole metric sought, but also agreement with the laws of black hole thermodynamics. In this paper, we describe how these goals are achieved in string theory. We review black hole thermodynamics, and then explicate the general stringy derivation of classical spacetimes, the construction of a simple black hole solution, and the derivation of its entropy. With that in hand, we (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Lorentz Transformation in a Fishbowl: A Comment on Cheng and Read’s “Why Not a Sound Postulate?”.Daniel Shanahan - 2023 - Foundations of Physics 53 (3):1-22.
    In support of their contention that it is the absence of a subsisting medium that imbues the speed of light with fundamentality, Bryan Cheng and James Read discuss certain “fishbowl universes” in which physical influences evolve, not at the speed of light, but that of sound. The Lorentz transformation simulated in these sonic universes, which the authors cite from the literature of analogue gravity, is not that of Einstein, for whom an aether was “superfluous”, but that of the earlier relativity (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What can we learn (and not learn) from thought experiments in black hole thermodynamics?Patricia Palacios & Rawad El Skaf - 2022 - Synthese 200 (6):1-27.
    Scientists investigating the thermal properties of black holes rely heavily on theoretical and non-empirical tools, such as mathematical derivations, analogue experiments and thought experiments. Although the use of mathematical derivations and analogue experiments in the context of black hole physics has recently received a great deal of attention among philosophers of science, the use of thought experiments (TEs) in that context has been almost completely neglected. In this paper, we will start filling this gap by systematically analyzing the epistemic role (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • How to think about analogical inferences: A reply to Norton.Benjamin S. Genta - 2020 - Studies in History and Philosophy of Science Part A 82:17-24.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Reductive Explanation and the Construction of Quantum Theories.Benjamin H. Feintzeig - 2022 - British Journal for the Philosophy of Science 73 (2):457-486.
    I argue that philosophical issues concerning reductive explanations help constrain the construction of quantum theories with appropriate state spaces. I illustrate this general proposal with two examples of restricting attention to physical states in quantum theories: regular states and symmetry-invariant states. 1Introduction2Background2.1 Physical states2.2 Reductive explanations3The Proposed ‘Correspondence Principle’4Example: Regularity5Example: Symmetry-Invariance6Conclusion: Heuristics and Discovery.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Why Not a Sound Postulate?Bryan Cheng & James Read - 2021 - Foundations of Physics 51 (3):1-20.
    What, if anything, would be wrong with replacing the light postulate in Einstein’s 1905 formulation of special relativity with a ‘sound postulate’, stating that the speed of sound is independent of the speed of the source? After reviewing the historical reasons underlying the particular focus on light in the special theory, we consider the circumstances under which such a theory of ‘sonic relativity’ would be justified on empirical grounds. We then consider the philosophical upshots of ‘sonic relativity’ for four contemporary (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The multiple realizability of general relativity in quantum gravity.Rasmus Jaksland - 2019 - Synthese 199 (S2):441-467.
    Must a theory of quantum gravity have some truth to it if it can recover general relativity in some limit of the theory? This paper answers this question in the negative by indicating that general relativity is multiply realizable in quantum gravity. The argument is inspired by spacetime functionalism—multiple realizability being a central tenet of functionalism—and proceeds via three case studies: induced gravity, thermodynamic gravity, and entanglement gravity. In these, general relativity in the form of the Einstein field equations can (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Phase transitions and the birth of early universe particle physics.Adam Koberinski - 2024 - Studies in History and Philosophy of Science Part A 105 (C):59-73.
    Download  
     
    Export citation  
     
    Bookmark   1 citation