Order:
See also
Nick Huggett
University of Illinois, Chicago
  1. Out of Nowhere: Duality.Nick Huggett & Christian Wüthrich - manuscript
    This is a chapter of the planned monograph "Out of Nowhere: The Emergence of Spacetime in Quantum Theories of Gravity", co-authored by Nick Huggett and Christian Wüthrich and under contract with Oxford University Press. (More information at www<dot>beyondspacetime<dot>net.) This chapter investigates the meaning and significance of string theoretic dualities, arguing they reveal a surprising physical indeterminateness to spacetime.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  2. Philosophy Beyond Spacetime: Introduction.Christian Wüthrich, Baptiste Le Bihan & Nick Huggett - 2021 - In Christian Wüthrich, Baptiste Le Bihan & Nick Huggett (eds.), Philosophy Beyond Spacetime: Implications From Quantum Gravity. Oxford: Oxford University Press. pp. 1-15.
    The present volume collects essays on the philosophical foundations of quantum theories of gravity, such as loop quantum gravity and string theory. Central for philosophical concerns is quantum gravity's suggestion that space and time, or spacetime, may not exist fundamentally, but instead be a derivative entity emerging from non-spatiotemporal degrees of freedom. In the spirit of naturalised metaphysics, contributions to this volume consider the philosophical implications of this suggestion. In turn, philosophical methods and insights are brought to bear on the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Out of Nowhere: Spacetime From Causality: Causal Set Theory.Christian Wüthrich & Nick Huggett - manuscript
    This is a chapter of the planned monograph "Out of Nowhere: The Emergence of Spacetime in Quantum Theories of Gravity", co-authored by Nick Huggett and Christian Wüthrich and under contract with Oxford University Press. (More information at www<dot>beyondspacetime<dot>net.) This chapter introduces causal set theory and identifies and articulates a 'problem of space' in this theory.
    Download  
     
    Export citation  
     
    Bookmark  
  4. Out of Nowhere: The 'Emergence' of Spacetime in String Theory.Nick Huggett & Christian Wüthrich - manuscript
    This is a chapter of the planned monograph "Out of Nowhere: The Emergence of Spacetime in Quantum Theories of Gravity", co-authored by Nick Huggett and Christian Wüthrich and under contract with Oxford University Press. This chapter analyses the nature and derivation of spacetime topology and geometry according to string theory.
    Download  
     
    Export citation  
     
    Bookmark  
  5. Reading the Past in the Present.Nick Huggett - unknown
    Why is our knowledge of the past so much more ‘expansive’ (to pick a suitably vague term) than our knowledge of the future, and what is the best way to capture the difference(s) (i.e., in what sense is knowledge of the past more ‘expansive’)? One could reasonably approach these questions by giving necessary conditions for different kinds of knowledge, and showing how some were satisfied by certain propositions about the past, and not by corresponding propositions about the future. I take (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Out of Nowhere: Introduction: The Emergence of Spacetime.Nick Huggett & Christian Wuthrich - 2021
    This is a chapter of the planned monograph "Out of Nowhere: The Emergence of Spacetime in Quantum Theories of Gravity", co-authored by Nick Huggett and Christian Wüthrich and under contract with Oxford University Press. (More information at www<dot>beyondspacetime<dot>net.) This chapter introduces the problem of emergence of spacetime in quantum gravity. It introduces the main philosophical challenge to spacetime emergence and sketches our preferred solution to it.
    Download  
     
    Export citation  
     
    Bookmark  
  7.  16
    Quantum Gravity in a Laboratory?Nick Huggett, Niels S. Linnemann & Mike D. Schneider - manuscript
    It has long been thought that observing distinctive traces of quantum gravity in a laboratory setting is effectively impossible, since gravity is so much weaker than all the other familiar forces in particle physics. But the quantum gravity phenomenology community today seeks to do the (effectively) impossible, using a challenging novel class of `tabletop' Gravitationally Induced Entanglement (GIE) experiments, surveyed here. The hypothesized outcomes of the GIE experiments are claimed by some (but disputed by others) to provide a `witness' of (...)
    Download  
     
    Export citation  
     
    Bookmark