Switch to: References

Add citations

You must login to add citations.
  1. On the Foundations of Computing. Computing as the Fourth Great Domain of Science. [REVIEW]Gordana Dodig-Crnkovic - 2023 - Global Philosophy 33 (1):1-12.
    This review essay analyzes the book by Giuseppe Primiero, On the foundations of computing. Oxford: Oxford University Press (ISBN 978-0-19-883564-6/hbk; 978-0-19-883565-3/pbk). xix, 296 p. (2020). It gives a critical view from the perspective of physical computing as a foundation of computing and argues that the neglected pillar of material computation (Stepney) should be brought centerstage and computing recognized as the fourth great domain of science (Denning).
    Download  
     
    Export citation  
     
    Bookmark  
  • Fermi’s Golden Rule and the Second Law of Thermodynamics.D. Braak & J. Mannhart - 2020 - Foundations of Physics 50 (11):1509-1540.
    We present a Gedankenexperiment that leads to a violation of detailed balance if quantum mechanical transition probabilities are treated in the usual way by applying Fermi’s “golden rule”. This Gedankenexperiment introduces a collection of two-level systems that absorb and emit radiation randomly through non-reciprocal coupling to a waveguide, as realized in specific chiral quantum optical systems. The non-reciprocal coupling is modeled by a hermitean Hamiltonian and is compatible with the time-reversal invariance of unitary quantum dynamics. Surprisingly, the combination of non-reciprocity (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Bit (and Three Other Abstractions) Define the Borderline Between Hardware and Software.Russ Abbott - 2019 - Minds and Machines 29 (2):239-285.
    Modern computing is generally taken to consist primarily of symbol manipulation. But symbols are abstract, and computers are physical. How can a physical device manipulate abstract symbols? Neither Church nor Turing considered this question. My answer is that the bit, as a hardware-implemented abstract data type, serves as a bridge between materiality and abstraction. Computing also relies on three other primitive—but more straightforward—abstractions: Sequentiality, State, and Transition. These physically-implemented abstractions define the borderline between hardware and software and between physicality and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Beyond Negation and Excluded Middle: An exploration to Embrace the Otherness Beyond Classical Logic System and into Neutrosophic Logic.Florentin Smarandache & Victor Christianto - 2023 - Prospects for Applied Mathematics and Data Analysis 2 (2):34-40.
    As part of our small contribution in dialogue toward better peace development and reconciliation studies, and following Toffler & Toffler’s War and Antiwar (1993), the present article delves into a realm of logic beyond the traditional confines of negation and the excluded middle principle, exploring the nuances of "Otherness" that transcend classical and Nagatomo logics. Departing from the foundational premises of classical Aristotelian logic systems, this exploration ventures into alternative realms of reasoning, specifically examining Neutrosophic Logic and Klein bottle logic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Computation in physical systems.Gualtiero Piccinini - 2010 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Quantum computing.Amit Hagar & Michael Cuffaro - 2019 - Stanford Encyclopedia of Philosophy.
    Combining physics, mathematics and computer science, quantum computing and its sister discipline of quantum information have developed in the past few decades from visionary ideas to two of the most fascinating areas of quantum theory. General interest and excitement in quantum computing was initially triggered by Peter Shor (1994) who showed how a quantum algorithm could exponentially “speed-up” classical computation and factor large numbers into primes far more efficiently than any (known) classical algorithm. Shor’s algorithm was soon followed by several (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Historical and Conceptual Foundations of Information Physics.Anta Javier - 2021 - Dissertation, Universitat de Barcelona
    The main objective of this dissertation is to philosophically assess how the use of informational concepts in the field of classical thermostatistical physics has historically evolved from the late 1940s to the present day. I will first analyze in depth the main notions that form the conceptual basis on which 'informational physics' historically unfolded, encompassing (i) different entropy, probability and information notions, (ii) their multiple interpretative variations, and (iii) the formal, numerical and semantic-interpretative relationships among them. In the following, I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Putting probabilities first. How Hilbert space generates and constrains them.Michael Janas, Michael Cuffaro & Michel Janssen - manuscript
    We use Bub's (2016) correlation arrays and Pitowksy's (1989b) correlation polytopes to analyze an experimental setup due to Mermin (1981) for measurements on the singlet state of a pair of spin-12 particles. The class of correlations allowed by quantum mechanics in this setup is represented by an elliptope inscribed in a non-signaling cube. The class of correlations allowed by local hidden-variable theories is represented by a tetrahedron inscribed in this elliptope. We extend this analysis to pairs of particles of arbitrary (...)
    Download  
     
    Export citation  
     
    Bookmark