Switch to: References

Citations of:

Quantum computing

Stanford Encyclopedia of Philosophy (2019)

Add citations

You must login to add citations.
  1. Philosophy of Mind Is (in Part) Philosophy of Computer Science.Darren Abramson - 2011 - Minds and Machines 21 (2):203-219.
    In this paper I argue that whether or not a computer can be built that passes the Turing test is a central question in the philosophy of mind. Then I show that the possibility of building such a computer depends on open questions in the philosophy of computer science: the physical Church-Turing thesis and the extended Church-Turing thesis. I use the link between the issues identified in philosophy of mind and philosophy of computer science to respond to a prominent argument (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Ethics of Quantum Computing: an Outline.Luca M. Possati - 2023 - Philosophy and Technology 36 (3):1-21.
    This paper intends to contribute to the emerging literature on the ethical problems posed by quantum computing and quantum technologies in general. The key ethical questions are as follows: Does quantum computing pose new ethical problems, or are those raised by quantum computing just a different version of the same ethical problems raised by other technologies, such as nanotechnologies, nuclear plants, or cloud computing? In other words, what is new in quantum computing from an ethical point of view? The paper (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Analogue Models and Universal Machines. Paradigms of Epistemic Transparency in Artificial Intelligence.Hajo Greif - 2022 - Minds and Machines 32 (1):111-133.
    The problem of epistemic opacity in Artificial Intelligence is often characterised as a problem of intransparent algorithms that give rise to intransparent models. However, the degrees of transparency of an AI model should not be taken as an absolute measure of the properties of its algorithms but of the model’s degree of intelligibility to human users. Its epistemically relevant elements are to be specified on various levels above and beyond the computational one. In order to elucidate this claim, I first (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Significance of the Gottesman–Knill Theorem.Michael E. Cuffaro - 2017 - British Journal for the Philosophy of Science 68 (1):91-121.
    According to the Gottesman–Knill theorem, quantum algorithms that utilize only the operations belonging to a certain restricted set are efficiently simulable classically. Since some of the operations in this set generate entangled states, it is commonly concluded that entanglement is insufficient to enable quantum computers to outperform classical computers. I argue in this article that this conclusion is misleading. First, the statement of the theorem is, on reflection, already evident when we consider Bell’s and related inequalities in the context of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Analogue Quantum Simulation: A Philosophical Prospectus.Dominik Hangleiter, Jacques Carolan & Karim P. Y. Thebault - unknown
    This paper provides the first systematic philosophical analysis of an increasingly important part of modern scientific practice: analogue quantum simulation. We introduce the distinction between `simulation' and `emulation' as applied in the context of two case studies. Based upon this distinction, and building upon ideas from the recent philosophical literature on scientific understanding, we provide a normative framework to isolate and support the goals of scientists undertaking analogue quantum simulation and emulation. We expect our framework to be useful to both (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Interpreting quantum nonlocality as platonic information.James C. Emerson - unknown
    Download  
     
    Export citation  
     
    Bookmark   1 citation