Switch to: References

Add citations

You must login to add citations.
  1. Questions on generalised Baire spaces.Yurii Khomskii, Giorgio Laguzzi, Benedikt Löwe & Ilya Sharankou - 2016 - Mathematical Logic Quarterly 62 (4-5):439-456.
    We provide a list of open problems in the research area of generalised Baire spaces, compiled with the help of the participants of two workshops held in Amsterdam (2014) and Hamburg (2015).
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Applications of PCF theory.Saharon Shelah - 2000 - Journal of Symbolic Logic 65 (4):1624-1674.
    We deal with several pcf problems: we characterize another version of exponentiation: maximal number of κ-branches in a tree with λ nodes, deal with existence of independent sets in stable theories, possible cardinalities of ultraproducts and the depth of ultraproducts of Boolean Algebras. Also we give cardinal invariants for each λ with a pcf restriction and investigate further T D (f). The sections can be read independently, although there are some minor dependencies.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Perfect trees and elementary embeddings.Sy-David Friedman & Katherine Thompson - 2008 - Journal of Symbolic Logic 73 (3):906-918.
    An important technique in large cardinal set theory is that of extending an elementary embedding j: M → N between inner models to an elementary embedding j*: M[G] → N[G*] between generic extensions of them. This technique is crucial both in the study of large cardinal preservation and of internal consistency. In easy cases, such as when forcing to make the GCH hold while preserving a measurable cardinal (via a reverse Easton iteration of α-Cohen forcing for successor cardinals α), the (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Towers and clubs.Pierre Matet - 2021 - Archive for Mathematical Logic 60 (6):683-719.
    We revisit several results concerning club principles and nonsaturation of the nonstationary ideal, attempting to improve them in various ways. So we typically deal with a ideal J extending the nonstationary ideal on a regular uncountable cardinal \, our goal being to witness the nonsaturation of J by the existence of towers ).
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Higher Dimensional Cardinal Characteristics for Sets of Functions II.Jörg Brendle & Corey Bacal Switzer - 2023 - Journal of Symbolic Logic 88 (4):1421-1442.
    We study the values of the higher dimensional cardinal characteristics for sets of functions $f:\omega ^\omega \to \omega ^\omega $ introduced by the second author in [8]. We prove that while the bounding numbers for these cardinals can be strictly less than the continuum, the dominating numbers cannot. We compute the bounding numbers for the higher dimensional relations in many well known models of $\neg \mathsf {CH}$ such as the Cohen, random and Sacks models and, as a byproduct show that, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cardinal characteristics at κ in a small u ( κ ) model.A. D. Brooke-Taylor, V. Fischer, S. D. Friedman & D. C. Montoya - 2017 - Annals of Pure and Applied Logic 168 (1):37-49.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Layered Posets and Kunen’s Universal Collapse.Sean Cox - 2019 - Notre Dame Journal of Formal Logic 60 (1):27-60.
    We develop the theory of layered posets and use the notion of layering to prove a new iteration theorem is κ-cc, as long as direct limits are used sufficiently often. This iteration theorem simplifies and generalizes the various chain condition arguments for universal Kunen iterations in the literature on saturated ideals, especially in situations where finite support iterations are not possible. We also provide two applications:1 For any n≥1, a wide variety of <ωn−1-closed, ωn+1-cc posets of size ωn+1 can consistently (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Higher dimensional cardinal characteristics for sets of functions.Corey Bacal Switzer - 2022 - Annals of Pure and Applied Logic 173 (1):103031.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Easton’s theorem in the presence of Woodin cardinals.Brent Cody - 2013 - Archive for Mathematical Logic 52 (5-6):569-591.
    Under the assumption that δ is a Woodin cardinal and GCH holds, I show that if F is any class function from the regular cardinals to the cardinals such that (1) ${\kappa < {\rm cf}(F(\kappa))}$ , (2) ${\kappa < \lambda}$ implies ${F(\kappa) \leq F(\lambda)}$ , and (3) δ is closed under F, then there is a cofinality-preserving forcing extension in which 2 γ = F(γ) for each regular cardinal γ < δ, and in which δ remains Woodin. Unlike the analogous (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Uncountable superperfect forcing and minimality.Elizabeth Theta Brown & Marcia J. Groszek - 2006 - Annals of Pure and Applied Logic 144 (1-3):73-82.
    Uncountable superperfect forcing is tree forcing on regular uncountable cardinals κ with κ<κ=κ, using trees in which the heights of nodes that split along any branch in the tree form a club set, and such that any node in the tree with more than one immediate extension has measure-one-many extensions, where the measure is relative to some κ-complete, nonprincipal normal filter F. This forcing adds a generic of minimal degree if and only if F is κ-saturated.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Disjoint Borel functions.Dan Hathaway - 2017 - Annals of Pure and Applied Logic 168 (8):1552-1563.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Higher Miller forcing may collapse cardinals.Heike Mildenberger & Saharon Shelah - 2021 - Journal of Symbolic Logic 86 (4):1721-1744.
    We show that it is independent whether club $\kappa $ -Miller forcing preserves $\kappa ^{++}$. We show that under $\kappa ^{ \kappa $, club $\kappa $ -Miller forcing collapses $\kappa ^{<\kappa }$ to $\kappa $. Answering a question by Brendle, Brooke-Taylor, Friedman and Montoya, we show that the iteration of ultrafilter $\kappa $ -Miller forcing does not have the Laver property.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cardinal invariants of the continuum and combinatorics on uncountable cardinals.Jörg Brendle - 2006 - Annals of Pure and Applied Logic 144 (1-3):43-72.
    We explore the connection between combinatorial principles on uncountable cardinals, like stick and club, on the one hand, and the combinatorics of sets of reals and, in particular, cardinal invariants of the continuum, on the other hand. For example, we prove that additivity of measure implies that Martin’s axiom holds for any Cohen algebra. We construct a model in which club holds, yet the covering number of the null ideal is large. We show that for uncountable cardinals κ≤λ and , (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Strongly unfoldable, splitting and bounding.Ömer Faruk Bağ & Vera Fischer - 2023 - Mathematical Logic Quarterly 69 (1):7-14.
    Assuming, we show that generalized eventually narrow sequences on a strongly inaccessible cardinal κ are preserved under a one step iteration of the Hechler forcing for adding a dominating κ‐real. Moreover, we show that if κ is strongly unfoldable, and λ is a regular cardinal such that, then there is a set generic extension in which.
    Download  
     
    Export citation  
     
    Bookmark  
  • Easton's theorem for the tree property below ℵ.Šárka Stejskalová - 2021 - Annals of Pure and Applied Logic 172 (7):102974.
    Download  
     
    Export citation  
     
    Bookmark  
  • On configurations concerning cardinal characteristics at regular cardinals.Omer Ben-Neria & Shimon Garti - 2020 - Journal of Symbolic Logic 85 (2):691-708.
    We study the consistency and consistency strength of various configurations concerning the cardinal characteristics $\mathfrak {s}_\theta, \mathfrak {p}_\theta, \mathfrak {t}_\theta, \mathfrak {g}_\theta, \mathfrak {r}_\theta $ at uncountable regular cardinals $\theta $. Motivated by a theorem of Raghavan–Shelah who proved that $\mathfrak {s}_\theta \leq \mathfrak {b}_\theta $, we explore in the first part of the paper the consistency of inequalities comparing $\mathfrak {s}_\theta $ with $\mathfrak {p}_\theta $ and $\mathfrak {g}_\theta $. In the second part of the paper we study variations (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Generalized Tower Spectra.Vera Fischer & Silvan Horvath - forthcoming - Journal of Symbolic Logic:1-17.
    We investigate the tower spectrum in the generalized Baire space, i.e., the set of lengths of towers in $\kappa ^\kappa $. We show that both small and large tower spectra at all regular cardinals simultaneously are consistent. Furthermore, based on previous work by Bağ, the first author and Friedman, we prove that globally, a small tower spectrum is consistent with an arbitrarily large spectrum of maximal almost disjoint families. Finally, we show that any non-trivial upper bound on the tower spectrum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • More zfc inequalities between cardinal invariants.Vera Fischer & Dániel T. Soukup - 2021 - Journal of Symbolic Logic 86 (3):897-912.
    Motivated by recent results and questions of Raghavan and Shelah, we present ZFC theorems on the bounding and various almost disjointness numbers, as well as on reaping and dominating families on uncountable, regular cardinals. We show that if $\kappa =\lambda ^+$ for some $\lambda \geq \omega $ and $\mathfrak {b}=\kappa ^+$ then $\mathfrak {a}_e=\mathfrak {a}_p=\kappa ^+$. If, additionally, $2^{<\lambda }=\lambda $ then $\mathfrak {a}_g=\kappa ^+$ as well. Furthermore, we prove a variety of new bounds for $\mathfrak {d}$ in terms of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An inner model for global domination.Sy-David Friedman & Katherine Thompson - 2009 - Journal of Symbolic Logic 74 (1):251-264.
    In this paper it is shown that the global statement that the dominating number for k is less than $2^k $ for all regular k, is internally consistent, given the existence of $0^\# $ . The possible range of values for the dominating number for k and $2^k $ which may be simultaneously true in an inner model is also explored.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On General Boundedness and Dominating Cardinals.J. Donald Monk - 2004 - Notre Dame Journal of Formal Logic 45 (3):129-146.
    For cardinals we let be the smallest size of a subset B of unbounded in the sense of ; that is, such that there is no function such that has size less than for all . Similarly for , the general dominating number, which is the smallest size of a subset B of such that for every there is an such that the above set has size less than . These cardinals are generalizations of the usual ones for . When (...)
    Download  
     
    Export citation  
     
    Bookmark