Switch to: References

Add citations

You must login to add citations.
  1. Global singularization and the failure of SCH.Radek Honzik - 2010 - Annals of Pure and Applied Logic 161 (7):895-915.
    We say that κ is μ-hypermeasurable for a cardinal μ≥κ+ if there is an embedding j:V→M with critical point κ such that HV is included in M and j>μ. Such a j is called a witnessing embedding.Building on the results in [7], we will show that if V satisfies GCH and F is an Easton function from the regular cardinals into cardinals satisfying some mild restrictions, then there exists a cardinal-preserving forcing extension V* where F is realised on all V-regular (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Eastonʼs theorem and large cardinals from the optimal hypothesis.Sy-David Friedman & Radek Honzik - 2012 - Annals of Pure and Applied Logic 163 (12):1738-1747.
    The equiconsistency of a measurable cardinal with Mitchell order o=κ++ with a measurable cardinal such that 2κ=κ++ follows from the results by W. Mitchell [13] and M. Gitik [7]. These results were later generalized to measurable cardinals with 2κ larger than κ++ .In Friedman and Honzik [5], we formulated and proved Eastonʼs theorem [4] in a large cardinal setting, using slightly stronger hypotheses than the lower bounds identified by Mitchell and Gitik , for a suitable μ, instead of the cardinals (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Easton’s theorem and large cardinals.Sy-David Friedman & Radek Honzik - 2008 - Annals of Pure and Applied Logic 154 (3):191-208.
    The continuum function αmaps to2α on regular cardinals is known to have great freedom. Let us say that F is an Easton function iff for regular cardinals α and β, image and α<β→F≤F. The classic example of an Easton function is the continuum function αmaps to2α on regular cardinals. If GCH holds then any Easton function is the continuum function on regular cardinals of some cofinality-preserving extension V[G]; we say that F is realised in V[G]. However if we also wish (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A Lifting Argument for the Generalized Grigorieff Forcing.Radek Honzík & Jonathan Verner - 2016 - Notre Dame Journal of Formal Logic 57 (2):221-231.
    In this short paper, we describe another class of forcing notions which preserve measurability of a large cardinal $\kappa$ from the optimal hypothesis, while adding new unbounded subsets to $\kappa$. In some ways these forcings are closer to the Cohen-type forcings—we show that they are not minimal—but, they share some properties with treelike forcings. We show that they admit fusion-type arguments which allow for a uniform lifting argument.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Fusion and large cardinal preservation.Sy-David Friedman, Radek Honzik & Lyubomyr Zdomskyy - 2013 - Annals of Pure and Applied Logic 164 (12):1247-1273.
    In this paper we introduce some fusion properties of forcing notions which guarantee that an iteration with supports of size ⩽κ not only does not collapse κ+ but also preserves the strength of κ. This provides a general theory covering the known cases of tree iterations which preserve large cardinals [3], Friedman and Halilović [5], Friedman and Honzik [6], Friedman and Magidor [8], Friedman and Zdomskyy [10], Honzik [12]).
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Definable normal measures.Sy-David Friedman & Liuzhen Wu - 2015 - Annals of Pure and Applied Logic 166 (1):46-60.
    Download  
     
    Export citation  
     
    Bookmark  
  • Easton’s theorem in the presence of Woodin cardinals.Brent Cody - 2013 - Archive for Mathematical Logic 52 (5-6):569-591.
    Under the assumption that δ is a Woodin cardinal and GCH holds, I show that if F is any class function from the regular cardinals to the cardinals such that (1) ${\kappa < {\rm cf}(F(\kappa))}$ , (2) ${\kappa < \lambda}$ implies ${F(\kappa) \leq F(\lambda)}$ , and (3) δ is closed under F, then there is a cofinality-preserving forcing extension in which 2 γ = F(γ) for each regular cardinal γ < δ, and in which δ remains Woodin. Unlike the analogous (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The failure of GCH at a degree of supercompactness.Brent Cody - 2012 - Mathematical Logic Quarterly 58 (1):83-94.
    We determine the large cardinal consistency strength of the existence of a λ-supercompact cardinal κ such that equation image fails at λ. Indeed, we show that the existence of a λ-supercompact cardinal κ such that 2λ ≥ θ is equiconsistent with the existence of a λ-supercompact cardinal that is also θ-tall. We also prove some basic facts about the large cardinal notion of tallness with closure.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Laver-like indestructibility for hypermeasurable cardinals.Radek Honzik - 2019 - Archive for Mathematical Logic 58 (3-4):275-287.
    We show that if \ is \\)-hypermeasurable for some cardinal \ with \ \le \mu \) and GCH holds, then we can extend the universe by a cofinality-preserving forcing to obtain a model \ in which the \\)-hypermeasurability of \ is indestructible by the Cohen forcing at \ of any length up to \ is \\)-hypermeasurable in \). The preservation of hypermeasurability is useful for subsequent arguments. The construction of \ is based on the ideas of Woodin and Cummings :1–39, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Small universal families for graphs omitting cliques without GCH.Katherine Thompson - 2010 - Archive for Mathematical Logic 49 (7-8):799-811.
    When no single universal model for a set of structures exists at a given cardinal, then one may ask in which models of set theory does there exist a small family which embeds the rest. We show that for λ+-graphs (λ regular) omitting cliques of some finite or uncountable cardinality, it is consistent that there are small universal families and 2λ > λ+. In particular, we get such a result for triangle-free graphs.
    Download  
     
    Export citation  
     
    Bookmark