Switch to: References

Add citations

You must login to add citations.
  1. Divide and Conquer: Dividing Lines and Universality.Saharon Shelah - 2021 - Theoria 87 (2):259-348.
    We discuss dividing lines (in model theory) and some test questions, mainly the universality spectrum. So there is much on conjectures, problems and old results, mainly of the author and also on some recent results.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Universal Structures.Saharon Shelah - 2017 - Notre Dame Journal of Formal Logic 58 (2):159-177.
    We deal with the existence of universal members in a given cardinality for several classes. First, we deal with classes of abelian groups, specifically with the existence of universal members in cardinalities which are strong limit singular of countable cofinality or λ=λℵ0. We use versions of being reduced—replacing Q by a subring —and get quite accurate results for the existence of universals in a cardinal, for embeddings and for pure embeddings. Second, we deal with the oak property, a property of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On properties of theories which preclude the existence of universal models.Mirna Džamonja & Saharon Shelah - 2006 - Annals of Pure and Applied Logic 139 (1):280-302.
    We introduce the oak property of first order theories, which is a syntactical condition that we show to be sufficient for a theory not to have universal models in cardinality λ when certain cardinal arithmetic assumptions about λ implying the failure of GCH hold. We give two examples of theories that have the oak property and show that none of these examples satisfy SOP4, not even SOP3. This is related to the question of the connection of the property SOP4 to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Club Guessing and the Universal Models.Mirna Džamonja - 2005 - Notre Dame Journal of Formal Logic 46 (3):283-300.
    We survey the use of club guessing and other PCF constructs in the context of showing that a given partially ordered class of objects does not have a largest, or a universal, element.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Universal graphs at ℵ ω 1 + 1.Jacob Davis - 2017 - Annals of Pure and Applied Logic 168 (10):1878-1901.
    Download  
     
    Export citation  
     
    Bookmark  
  • Small universal families of graphs on ℵω+ 1.James Cummings, Mirna Džamonja & Charles Morgan - 2016 - Journal of Symbolic Logic 81 (2):541-569.
    Download  
     
    Export citation  
     
    Bookmark   1 citation