Switch to: References

Citations of:

Models and Computability

Philosophia Mathematica 22 (2):143-166 (2014)

Add citations

You must login to add citations.
  1. Categoricity by convention.Julien Murzi & Brett Topey - 2021 - Philosophical Studies 178 (10):3391-3420.
    On a widespread naturalist view, the meanings of mathematical terms are determined, and can only be determined, by the way we use mathematical language—in particular, by the basic mathematical principles we’re disposed to accept. But it’s mysterious how this can be so, since, as is well known, minimally strong first-order theories are non-categorical and so are compatible with countless non-isomorphic interpretations. As for second-order theories: though they typically enjoy categoricity results—for instance, Dedekind’s categoricity theorem for second-order and Zermelo’s quasi-categoricity theorem (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Structure and Categoricity: Determinacy of Reference and Truth Value in the Philosophy of Mathematics.Tim Button & Sean Walsh - 2016 - Philosophia Mathematica 24 (3):283-307.
    This article surveys recent literature by Parsons, McGee, Shapiro and others on the significance of categoricity arguments in the philosophy of mathematics. After discussing whether categoricity arguments are sufficient to secure reference to mathematical structures up to isomorphism, we assess what exactly is achieved by recent ‘internal’ renditions of the famous categoricity arguments for arithmetic and set theory.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The epistemic significance of numerals.Jan Heylen - 2014 - Synthese 198 (Suppl 5):1019-1045.
    The central topic of this article is (the possibility of) de re knowledge about natural numbers and its relation with names for numbers. It is held by several prominent philosophers that (Peano) numerals are eligible for existential quantification in epistemic contexts (‘canonical’), whereas other names for natural numbers are not. In other words, (Peano) numerals are intimately linked with de re knowledge about natural numbers, whereas the other names for natural numbers are not. In this article I am looking for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Anti-Mechanist Argument Based on Gödel’s Incompleteness Theorems, Indescribability of the Concept of Natural Number and Deviant Encodings.Paula Quinon - 2020 - Studia Semiotyczne 34 (1):243-266.
    This paper reassesses the criticism of the Lucas-Penrose anti-mechanist argument, based on Gödel’s incompleteness theorems, as formulated by Krajewski : this argument only works with the additional extra-formal assumption that “the human mind is consistent”. Krajewski argues that this assumption cannot be formalized, and therefore that the anti-mechanist argument – which requires the formalization of the whole reasoning process – fails to establish that the human mind is not mechanistic. A similar situation occurs with a corollary to the argument, that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Implicit and Explicit Examples of the Phenomenon of Deviant Encodings.Paula Quinon - 2020 - Studies in Logic, Grammar and Rhetoric 63 (1):53-67.
    The core of the problem discussed in this paper is the following: the Church-Turing Thesis states that Turing Machines formally explicate the intuitive concept of computability. The description of Turing Machines requires description of the notation used for the input and for the output. Providing a general definition of notations acceptable in the process of computations causes problems. This is because a notation, or an encoding suitable for a computation, has to be computable. Yet, using the concept of computation, in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Representational Foundations of Computation.Michael Rescorla - 2015 - Philosophia Mathematica 23 (3):338-366.
    Turing computation over a non-linguistic domain presupposes a notation for the domain. Accordingly, computability theory studies notations for various non-linguistic domains. It illuminates how different ways of representing a domain support different finite mechanical procedures over that domain. Formal definitions and theorems yield a principled classification of notations based upon their computational properties. To understand computability theory, we must recognize that representation is a key target of mathematical inquiry. We must also recognize that computability theory is an intensional enterprise: it (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Cognitive Structuralism: Explaining the Regularity of the Natural Numbers Progression.Paula Quinon - 2022 - Review of Philosophy and Psychology 13 (1):127-149.
    According to one of the most powerful paradigms explaining the meaning of the concept of natural number, natural numbers get a large part of their conceptual content from core cognitive abilities. Carey’s bootstrapping provides a model of the role of core cognition in the creation of mature mathematical concepts. In this paper, I conduct conceptual analyses of various theories within this paradigm, concluding that the theories based on the ability to subitize (i.e., to assess anexactquantity of the elements in a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Can Church’s thesis be viewed as a Carnapian explication?Paula Quinon - 2019 - Synthese 198 (Suppl 5):1047-1074.
    Turing and Church formulated two different formal accounts of computability that turned out to be extensionally equivalent. Since the accounts refer to different properties they cannot both be adequate conceptual analyses of the concept of computability. This insight has led to a discussion concerning which account is adequate. Some authors have suggested that this philosophical debate—which shows few signs of converging on one view—can be circumvented by regarding Church’s and Turing’s theses as explications. This move opens up the possibility that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations