Switch to: References

Add citations

You must login to add citations.
  1. On the Physical Reality of Quantum Waves.Gennaro Auletta & Gino Tarozzi - 2004 - Foundations of Physics 34 (11):1675-1694.
    The main interpretations of the quantum-mechanical wave function are presented emphasizing how they can be divided into two ensembles: The ones that deny and the other ones that attribute a form of reality to quantum waves. It is also shown why these waves cannot be classical and must be submitted to the restriction of the complementarity principle. Applying the concept of smooth complementarity, it is shown that there can be no reason to attribute reality only to the events and not (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Forewords for the Special Issue ‘Pilot-wave and Beyond: Louis de Broglie and David Bohm’s Quest for a Quantum Ontology’.Aurélien Drezet - 2023 - Foundations of Physics 53 (3):1-9.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Equilibrium in Stochastic de Broglie–Bohm–Bell Quantum Mechanics.Jeroen C. Vink - 2023 - Foundations of Physics 53 (1):1-19.
    This paper investigates dynamical relaxation to quantum equilibrium in the stochastic de Broglie–Bohm–Bell formulation of quantum mechanics. The time-dependent probability distributions are computed as in a Markov process with slowly varying transition matrices. Numerical simulations, supported by exact results for the large-time behavior of sequences of (slowly varying) transition matrices, confirm previous findings that indicate that de Broglie–Bohm–Bell dynamics allows an arbitrary initial probability distribution to relax to quantum equilibrium; i.e., there is no need to make the ad-hoc assumption that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Statistical VS Wave Realism in the Foundations of Quantum Mechanics.Claudio Calosi, Vincenzo Fano, Pierluigi Graziani & Gino Tarozzi - unknown
    Different realistic attitudes towards wavefunctions and quantum states are as old as quantum theory itself. Recently Pusey, Barret and Rudolph on the one hand, and Auletta and Tarozzi on the other, have proposed new interesting arguments in favor of a broad realistic interpretation of quantum mechanics that can be considered the modern heir to some views held by the fathers of quantum theory. In this paper we give a new and detailed presentation of such arguments, propose a new taxonomy of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Equivalent Quantum Equations in a System Inspired by Bouncing Droplets Experiments.Christian Borghesi - 2017 - Foundations of Physics 47 (7):933-958.
    In this paper we study a classical and theoretical system which consists of an elastic medium carrying transverse waves and one point-like high elastic medium density, called concretion. We compute the equation of motion for the concretion as well as the wave equation of this system. Afterwards we always consider the case where the concretion is not the wave source any longer. Then the concretion obeys a general and covariant guidance formula, which leads in low-velocity approximation to an equivalent de (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • De Broglie's wave particle duality in the stochastic interpretation of quantum mechanics: A testable physical assumption. [REVIEW]Ph Gueret & J. -P. Vigier - 1982 - Foundations of Physics 12 (11):1057-1083.
    If one starts from de Broglie's basic relativistic assumptions, i.e., that all particles have an intrinsic real internal vibration in their rest frame, i.e., hv 0 =m 0 c 2 ; that when they are at any one point in space-time the phase of this vibration cannot depend on the choice of the reference frame, then, one can show (following Mackinnon (1) ) that there exists a nondispersive wave packet of de Broglie's waves which can be assimilated to the nonlinear (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A diffusion model for the Dirac equation.Leon Bess - 1979 - Foundations of Physics 9 (1-2):27-54.
    In previous work the author was able to derive the Schrödinger equation by an analytical approach built around a physical model that featured a special diffusion process in an ensemble of particles. In the present work, this approach is extended to include the derivation of the Dirac equation. To do this, the physical model has to be modified to make provision for intrinsic electric and magnetic dipoles to be associated with each ensemble particle.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Particle Trajectories for Quantum Field Theory.Jeroen C. Vink - 2018 - Foundations of Physics 48 (2):209-236.
    The formulation of quantum mechanics developed by Bohm, which can generate well-defined trajectories for the underlying particles in the theory, can equally well be applied to relativistic quantum field theories to generate dynamics for the underlying fields. However, it does not produce trajectories for the particles associated with these fields. Bell has shown that an extension of Bohm’s approach can be used to provide dynamics for the fermionic occupation numbers in a relativistic quantum field theory. In the present paper, Bell’s (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The wave properties of matter and the zeropoint radiation field.L. de la Peña & A. M. Cetto - 1994 - Foundations of Physics 24 (5):753-781.
    The origin of the wave properties of matter is discussed from the point of view of stochastic electrodynamics. A nonrelativistic model of a charged particle with an effective structure embedded in the random zeropoint radiation field reveals that the field induces a high-frequency vibration on the particle; internal consistency of the theory fixes the frequency of this jittering at mc2/ħ. The particle is therefore assumed to interact intensely with stationary zeropoint waves of this frequency as seen from its proper frame (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Spin and Contextuality in Extended de Broglie-Bohm-Bell Quantum Mechanics.Jeroen C. Vink - 2022 - Foundations of Physics 52 (5):1-27.
    This paper introduces an extension of the de Broglie-Bohm-Bell formulation of quantum mechanics, which includes intrinsic particle degrees of freedom, such as spin, as elements of reality. To evade constraints from the Kochen-Specker theorem the discrete spin values refer to a specific basis – i.e., a single spin vector orientation for each particle; these spin orientations are, however, not predetermined, but dynamic and guided by the wave function of the system, which is conditional on the realized location values of the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation