Switch to: References

Add citations

You must login to add citations.
  1. Failure of Completeness in Proof-Theoretic Semantics.Thomas Piecha, Wagner de Campos Sanz & Peter Schroeder-Heister - 2015 - Journal of Philosophical Logic 44 (3):321-335.
    Several proof-theoretic notions of validity have been proposed in the literature, for which completeness of intuitionistic logic has been conjectured. We define validity for intuitionistic propositional logic in a way which is common to many of these notions, emphasizing that an appropriate notion of validity must be closed under substitution. In this definition we consider atomic systems whose rules are not only production rules, but may include rules that allow one to discharge assumptions. Our central result shows that Harrop’s rule (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • On Dummett’s Pragmatist Justification Procedure.Hermógenes Oliveira - 2019 - Erkenntnis 86 (2):429-455.
    I show that propositional intuitionistic logic is complete with respect to an adaptation of Dummett’s pragmatist justification procedure. In particular, given a pragmatist justification of an argument, I show how to obtain a natural deduction derivation of the conclusion of the argument from, at most, the same assumptions.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Negative Predication and Distinctness.Bartosz Więckowski - 2023 - Logica Universalis 17 (1):103-138.
    It is argued that the intuitionistic conception of negation as implication of absurdity is inadequate for the proof-theoretic semantic analysis of negative predication and distinctness. Instead, it is suggested to construe negative predication proof-theoretically as subatomic derivation failure, and to define distinctness—understood as a qualified notion—by appeal to negative predication. This proposal is elaborated in terms of intuitionistic bipredicational subatomic natural deduction systems. It is shown that derivations in these systems normalize and that normal derivations have the subexpression (incl. subformula) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Dag Prawitz on Proofs and Meaning.Heinrich Wansing (ed.) - 2014 - Cham, Switzerland: Springer.
    This volume is dedicated to Prof. Dag Prawitz and his outstanding contributions to philosophical and mathematical logic. Prawitz's eminent contributions to structural proof theory, or general proof theory, as he calls it, and inference-based meaning theories have been extremely influential in the development of modern proof theory and anti-realistic semantics. In particular, Prawitz is the main author on natural deduction in addition to Gerhard Gentzen, who defined natural deduction in his PhD thesis published in 1934. The book opens with an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Advances in Proof-Theoretic Semantics.Peter Schroeder-Heister & Thomas Piecha (eds.) - 2015 - Cham, Switzerland: Springer Verlag.
    This volume is the first ever collection devoted to the field of proof-theoretic semantics. Contributions address topics including the systematics of introduction and elimination rules and proofs of normalization, the categorial characterization of deductions, the relation between Heyting's and Gentzen's approaches to meaning, knowability paradoxes, proof-theoretic foundations of set theory, Dummett's justification of logical laws, Kreisel's theory of constructions, paradoxical reasoning, and the defence of model theory. The field of proof-theoretic semantics has existed for almost 50 years, but the term (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Popper's Notion of Duality and His Theory of Negations.David Binder & Thomas Piecha - 2017 - History and Philosophy of Logic 38 (2):154-189.
    Karl Popper developed a theory of deductive logic in the late 1940s. In his approach, logic is a metalinguistic theory of deducibility relations that are based on certain purely structural rules. Logical constants are then characterized in terms of deducibility relations. Characterizations of this kind are also called inferential definitions by Popper. In this paper, we expound his theory and elaborate some of his ideas and results that in some cases were only sketched by him. Our focus is on Popper's (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Necessity of Thought.Cesare Cozzo - 2014 - In Heinrich Wansing (ed.), Dag Prawitz on Proofs and Meaning. Cham, Switzerland: Springer. pp. 101-20.
    The concept of “necessity of thought” plays a central role in Dag Prawitz’s essay “Logical Consequence from a Constructivist Point of View” (Prawitz 2005). The theme is later developed in various articles devoted to the notion of valid inference (Prawitz, 2009, forthcoming a, forthcoming b). In section 1 I explain how the notion of necessity of thought emerges from Prawitz’s analysis of logical consequence. I try to expound Prawitz’s views concerning the necessity of thought in sections 2, 3 and 4. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Constructive Validity of a Generalized Kreisel–Putnam Rule.Ivo Pezlar - forthcoming - Studia Logica.
    In this paper, we propose a computational interpretation of the generalized Kreisel–Putnam rule, also known as the generalized Harrop rule or simply the Split rule, in the style of BHK semantics. We will achieve this by exploiting the Curry–Howard correspondence between formulas and types. First, we inspect the inferential behavior of the Split rule in the setting of a natural deduction system for intuitionistic propositional logic. This will guide our process of formulating an appropriate program that would capture the corresponding (...)
    Download  
     
    Export citation  
     
    Bookmark