Switch to: References

Add citations

You must login to add citations.
  1. Negative Predication and Distinctness.Bartosz Więckowski - 2023 - Logica Universalis 17 (1):103-138.
    It is argued that the intuitionistic conception of negation as implication of absurdity is inadequate for the proof-theoretic semantic analysis of negative predication and distinctness. Instead, it is suggested to construe negative predication proof-theoretically as subatomic derivation failure, and to define distinctness—understood as a qualified notion—by appeal to negative predication. This proposal is elaborated in terms of intuitionistic bipredicational subatomic natural deduction systems. It is shown that derivations in these systems normalize and that normal derivations have the subexpression (incl. subformula) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Revisiting Dummett's Proof-Theoretic Justification Procedures.Hermógenes Oliveira - 2017 - In Arazim Pavel & Lávička Tomáš (eds.), The Logica Yearbook 2016. College Publications. pp. 141-155.
    Dummett’s justification procedures are revisited. They are used as background for the discussion of some conceptual and technical issues in proof-theoretic semantics, especially the role played by assumptions in proof-theoretic definitions of validity.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Base-extension semantics for intuitionistic sentential logic.Tor Sandqvist - 2015 - Logic Journal of the IGPL 23 (5):719-731.
    Intuitionistic sentential logic is shown to be sound and complete with respect to a semantics centered around extensions of atomic bases (i.e. sets of inference rules for atomic sentences). The result is made possible through a non-standard interpretation of disjunction, whereby, roughly speaking, a disjunction is taken to hold just in case every atomic sentence that follows from each of the disjuncts separately holds; it is argued that this interpretation makes good sense provided that rules in atomic bases are conceived (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • On Dummett’s verificationist justification procedure.Wagner de Campos Sanz & Hermógenes Oliveira - 2016 - Synthese 193 (8):2539-2559.
    We examine the proof-theoretic verificationist justification procedure proposed by Dummett. After some scrutiny, two distinct interpretations with respect to bases are advanced: the independent and the dependent interpretation. We argue that both are unacceptable as a semantics for propositional intuitionistic logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Calculus of Higher-Level Rules, Propositional Quantification, and the Foundational Approach to Proof-Theoretic Harmony.Peter Schroeder-Heister - 2014 - Studia Logica 102 (6):1185-1216.
    We present our calculus of higher-level rules, extended with propositional quantification within rules. This makes it possible to present general schemas for introduction and elimination rules for arbitrary propositional operators and to define what it means that introductions and eliminations are in harmony with each other. This definition does not presuppose any logical system, but is formulated in terms of rules themselves. We therefore speak of a foundational account of proof-theoretic harmony. With every set of introduction rules a canonical elimination (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)Proof-Theoretic Semantics.Peter Schroeder-Heister - forthcoming - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Categorical Proof-theoretic Semantics.David Pym, Eike Ritter & Edmund Robinson - forthcoming - Studia Logica:1-38.
    In proof-theoretic semantics, model-theoretic validity is replaced by proof-theoretic validity. Validity of formulae is defined inductively from a base giving the validity of atoms using inductive clauses derived from proof-theoretic rules. A key aim is to show completeness of the proof rules without any requirement for formal models. Establishing this for propositional intuitionistic logic raises some technical and conceptual issues. We relate Sandqvist’s (complete) base-extension semantics of intuitionistic propositional logic to categorical proof theory in presheaves, reconstructing categorically the soundness and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Peter Schroeder-Heister on Proof-Theoretic Semantics.Thomas Piecha & Kai F. Wehmeier (eds.) - 2024 - Springer.
    This open access book is a superb collection of some fifteen chapters inspired by Schroeder-Heister's groundbreaking work, written by leading experts in the field, plus an extensive autobiography and comments on the various contributions by Schroeder-Heister himself. For several decades, Peter Schroeder-Heister has been a central figure in proof-theoretic semantics, a field of study situated at the interface of logic, theoretical computer science, natural-language semantics, and the philosophy of language. -/- The chapters of which this book is composed discuss the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Incompleteness of Intuitionistic Propositional Logic with Respect to Proof-Theoretic Semantics.Thomas Piecha & Peter Schroeder-Heister - 2019 - Studia Logica 107 (1):233-246.
    Prawitz proposed certain notions of proof-theoretic validity and conjectured that intuitionistic logic is complete for them [11, 12]. Considering propositional logic, we present a general framework of five abstract conditions which any proof-theoretic semantics should obey. Then we formulate several more specific conditions under which the intuitionistic propositional calculus turns out to be semantically incomplete. Here a crucial role is played by the generalized disjunction principle. Turning to concrete semantics, we show that prominent proposals, including Prawitz’s, satisfy at least one (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Prawitz's completeness conjecture: A reassessment.Peter Schroeder-Heister - 2024 - Theoria 90 (5):492-514.
    In 1973, Dag Prawitz conjectured that the calculus of intuitionistic logic is complete with respect to his notion of validity of arguments. On the background of the recent disproof of this conjecture by Piecha, de Campos Sanz and Schroeder-Heister, we discuss possible strategies of saving Prawitz's intentions. We argue that Prawitz's original semantics, which is based on the principal frame of all atomic systems, should be replaced with a general semantics, which also takes into account restricted frames of atomic systems. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Denotational Semantics for Languages of Epistemic Grounding Based on Prawitz’s Theory of Grounds.Antonio Piccolomini D’Aragona - 2021 - Studia Logica 110 (2):355-403.
    We outline a class of term-languages for epistemic grounding inspired by Prawitz’s theory of grounds. We show how denotation functions can be defined over these languages, relating terms to proof-objects built up of constructive functions. We discuss certain properties that the languages may enjoy both individually and with respect to their expansions. Finally, we provide a ground-theoretic version of Prawitz’s completeness conjecture, and adapt to our framework a refutation of this conjecture due to Piecha and Schroeder-Heister.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Proof-Theoretic Validity isn’t Intuitionistic; So What?Will Stafford - forthcoming - Australasian Journal of Philosophy.
    Several recent results bring into focus the superintuitionistic nature of most notions of proof-theoretic validity, but little work has been done evaluating the consequences of these results. Proof-theoretic validity claims to offer a formal explication of how inferences follow from the definitions of logic connectives (which are defined by their introduction rules). This paper explores whether the new results undermine this claim. It is argued that, while the formal results are worrying, superintuitionistic inferences are valid because the treatments of atomic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Subatomic Natural Deduction for a Naturalistic First-Order Language with Non-Primitive Identity.Bartosz Więckowski - 2016 - Journal of Logic, Language and Information 25 (2):215-268.
    A first-order language with a defined identity predicate is proposed whose apparatus for atomic predication is sensitive to grammatical categories of natural language. Subatomic natural deduction systems are defined for this naturalistic first-order language. These systems contain subatomic systems which govern the inferential relations which obtain between naturalistic atomic sentences and between their possibly composite components. As a main result it is shown that normal derivations in the defined systems enjoy the subexpression property which subsumes the subformula property with respect (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On Dummett’s Pragmatist Justification Procedure.Hermógenes Oliveira - 2019 - Erkenntnis 86 (2):429-455.
    I show that propositional intuitionistic logic is complete with respect to an adaptation of Dummett’s pragmatist justification procedure. In particular, given a pragmatist justification of an argument, I show how to obtain a natural deduction derivation of the conclusion of the argument from, at most, the same assumptions.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Calculi of Epistemic Grounding Based on Prawitz’s Theory of Grounds.Antonio Piccolomini D’Aragona - 2022 - Studia Logica 110 (3):819-877.
    We define a class of formal systems inspired by Prawitz’s theory of grounds. The latter is a semantics that aims at accounting for epistemic grounding, namely, at explaining why and how deductively valid inferences have the power to epistemically compel to accept the conclusion. Validity is defined in terms of typed objects, called grounds, that reify evidence for given judgments. An inference is valid when a function exists from grounds for the premises to grounds for the conclusion. Grounds are described (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Constructive Validity of a Generalized Kreisel–Putnam Rule.Ivo Pezlar - forthcoming - Studia Logica.
    In this paper, we propose a computational interpretation of the generalized Kreisel–Putnam rule, also known as the generalized Harrop rule or simply the Split rule, in the style of BHK semantics. We will achieve this by exploiting the Curry–Howard correspondence between formulas and types. First, we inspect the inferential behavior of the Split rule in the setting of a natural deduction system for intuitionistic propositional logic. This will guide our process of formulating an appropriate program that would capture the corresponding (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Proof-Theoretic Semantics: An Autobiographical Survey.Peter Schroeder-Heister - 2024 - In Thomas Piecha & Kai F. Wehmeier (eds.), Peter Schroeder-Heister on Proof-Theoretic Semantics. Springer. pp. 1-51.
    In this autobiographical sketch, which is followed by a bibliography of my writings, I try to relate my intellectual development to problems, ideas and results in proof-theoretic semantics on which I have worked and to which I have contributed.
    Download  
     
    Export citation  
     
    Bookmark   1 citation