Switch to: References

Add citations

You must login to add citations.
  1. Constructing Natural Extensions of Propositional Logics.Adam Přenosil - 2016 - Studia Logica 104 (6):1179-1190.
    The proofs of some results of abstract algebraic logic, in particular of the transfer principle of Czelakowski, assume the existence of so-called natural extensions of a logic by a set of new variables. Various constructions of natural extensions, claimed to be equivalent, may be found in the literature. In particular, these include a syntactic construction due to Shoesmith and Smiley and a related construction due to Łoś and Suszko. However, it was recently observed by Cintula and Noguera that both of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A survey of abstract algebraic logic.J. M. Font, R. Jansana & D. Pigozzi - 2003 - Studia Logica 74 (1-2):13 - 97.
    Download  
     
    Export citation  
     
    Bookmark   114 citations  
  • Definability of Leibniz equality.R. Elgueta & R. Jansana - 1999 - Studia Logica 63 (2):223-243.
    Given a structure for a first-order language L, two objects of its domain can be indiscernible relative to the properties expressible in L, without using the equality symbol, and without actually being the same. It is this relation that interests us in this paper. It is called Leibniz equality. In the paper we study systematically the problem of its definibility mainly for classes of structures that are the models of some equality-free universal Horn class in an infinitary language Lκκ, where (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On the complexity of the Leibniz hierarchy.Tommaso Moraschini - 2019 - Annals of Pure and Applied Logic 170 (7):805-824.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Four-Valued Logics of Truth, Nonfalsity, Exact Truth, and Material Equivalence.Adam Přenosil - 2020 - Notre Dame Journal of Formal Logic 61 (4):601-621.
    The four-valued semantics of Belnap–Dunn logic, consisting of the truth values True, False, Neither, and Both, gives rise to several nonclassical logics depending on which feature of propositions we wish to preserve: truth, nonfalsity, or exact truth. Interpreting equality of truth values in this semantics as material equivalence of propositions, we can moreover see the equational consequence relation of this four-element algebra as a logic of material equivalence. In this paper, we axiomatize all combinations of these four-valued logics, for example, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Lattice of Super-Belnap Logics.Adam Přenosil - 2023 - Review of Symbolic Logic 16 (1):114-163.
    We study the lattice of extensions of four-valued Belnap–Dunn logic, called super-Belnap logics by analogy with superintuitionistic logics. We describe the global structure of this lattice by splitting it into several subintervals, and prove some new completeness theorems for super-Belnap logics. The crucial technical tool for this purpose will be the so-called antiaxiomatic (or explosive) part operator. The antiaxiomatic (or explosive) extensions of Belnap–Dunn logic turn out to be of particular interest owing to their connection to graph theory: the lattice (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Categorical abstract algebraic logic: The Diagram and the Reduction Operator Lemmas.George Voutsadakis - 2007 - Mathematical Logic Quarterly 53 (2):147-161.
    The study of structure systems, an abstraction of the concept of first-order structures, is continued. Structure systems have algebraic systems as their algebraic reducts and their relational component consists of a collection of relation systems on the underlying functors. An analog of the expansion of a first-order structure by constants is presented. Furthermore, analogs of the Diagram Lemma and the Reduction Operator Lemma from the theory of equality-free first-order structures are provided in the framework of structure systems. (© 2007 WILEY-VCH (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Logics of upsets of De Morgan lattices.Adam Přenosil - forthcoming - Mathematical Logic Quarterly.
    We study logics determined by matrices consisting of a De Morgan lattice with an upward closed set of designated values, such as the logic of non‐falsity preservation in a given finite Boolean algebra and Shramko's logic of non‐falsity preservation in the four‐element subdirectly irreducible De Morgan lattice. The key tool in the study of these logics is the lattice‐theoretic notion of an n‐filter. We study the logics of all (complete, consistent, and classical) n‐filters on De Morgan lattices, which are non‐adjunctive (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • First order logic without equality on relativized semantics.Amitayu Banerjee & Mohamed Khaled - 2018 - Annals of Pure and Applied Logic 169 (11):1227-1242.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the Closure Properties of the Class of Full G-models of a Deductive System.Josep Maria Font, Ramon Jansana & Don Pigozzi - 2006 - Studia Logica 83 (1-3):215-278.
    In this paper we consider the structure of the class FGModS of full generalized models of a deductive system S from a universal-algebraic point of view, and the structure of the set of all the full generalized models of S on a fixed algebra A from the lattice-theoretical point of view; this set is represented by the lattice FACSs A of all algebraic closed-set systems C on A such that (A, C) ε FGModS. We relate some properties of these structures (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Relation Formulas for Protoalgebraic Equality Free Quasivarieties; Pałasińska’s Theorem Revisited.Anvar M. Nurakunov & Michał M. Stronkowski - 2013 - Studia Logica 101 (4):827-847.
    We provide a new proof of the following Pałasińska's theorem: Every finitely generated protoalgebraic relation distributive equality free quasivariety is finitely axiomatizable. The main tool we use are ${\mathcal{Q}}$ Q -relation formulas for a protoalgebraic equality free quasivariety ${\mathcal{Q}}$ Q . They are the counterparts of the congruence formulas used for describing the generation of congruences in algebras. Having this tool in hand, we prove a finite axiomatization theorem for ${\mathcal{Q}}$ Q when it has definable principal ${\mathcal{Q}}$ Q -subrelations. This (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Algebraic Characterizations for Universal Fragments of Logic.Raimon Elgueta - 1999 - Mathematical Logic Quarterly 45 (3):385-398.
    In this paper we address our efforts to extend the well-known connection in equational logic between equational theories and fully invariant congruences to other–possibly infinitary–logics. In the special case of algebras, this problem has been formerly treated by H. J. Hoehnke [10] and R. W. Quackenbush [14]. Here we show that the connection extends at least up to the universal fragment of logic. Namely, we establish that the concept of universal theory matches the abstract notion of fully invariant system. We (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On definability of the equality in classes of algebras with an equivalence relation.Pilar Dellunde I. Clavé - 2000 - Studia Logica 64 (3):345-353.
    We present a finitary regularly algebraizable logic not finitely equivalential, for every similarity type. We associate to each of these logics a class of algebras with an equivalence relation, with the property that in this class, the identity is atomatically definable but not finitely atomatically definable.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Review of protoalgebraic logics by J. Czelakowski. [REVIEW]Raimon Elgueta - 2003 - Studia Logica 74 (1-2):313 - 342.
    Download  
     
    Export citation  
     
    Bookmark   1 citation