Switch to: References

Add citations

You must login to add citations.
  1. Semantics without Toil? Brady and Rush Meet Halldén.Lloyd Humberstone - 2019 - Organon F: Medzinárodný Časopis Pre Analytickú Filozofiu 26 (3):340–404.
    The present discussion takes up an issue raised in Section 5 of Ross Brady and Penelope Rush’s paper ‘Four Basic Logical Issues’ concerning the (claimed) triviality – in the sense of automatic availability – of soundness and completeness results for a logic in a metalanguage employing at least as much logical vocabulary as the object logic, where the metalogical behaviour of the common logical vocabulary is as in the object logic. We shall see – in Propositions 4.5–4.7 – that this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Poset of All Logics I: Interpretations and Lattice Structure.R. Jansana & T. Moraschini - 2021 - Journal of Symbolic Logic 86 (3):935-964.
    A notion of interpretation between arbitrary logics is introduced, and the poset$\mathsf {Log}$of all logics ordered under interpretability is studied. It is shown that in$\mathsf {Log}$infima of arbitrarily large sets exist, but binary suprema in general do not. On the other hand, the existence of suprema of sets of equivalential logics is established. The relations between$\mathsf {Log}$and the lattice of interpretability types of varieties are investigated.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Lattice of Super-Belnap Logics.Adam Přenosil - 2023 - Review of Symbolic Logic 16 (1):114-163.
    We study the lattice of extensions of four-valued Belnap–Dunn logic, called super-Belnap logics by analogy with superintuitionistic logics. We describe the global structure of this lattice by splitting it into several subintervals, and prove some new completeness theorems for super-Belnap logics. The crucial technical tool for this purpose will be the so-called antiaxiomatic (or explosive) part operator. The antiaxiomatic (or explosive) extensions of Belnap–Dunn logic turn out to be of particular interest owing to their connection to graph theory: the lattice (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Poset of All Logics III: Finitely Presentable Logics.Ramon Jansana & Tommaso Moraschini - 2020 - Studia Logica 109 (3):539-580.
    A logic in a finite language is said to be finitely presentable if it is axiomatized by finitely many finite rules. It is proved that binary non-indexed products of logics that are both finitely presentable and finitely equivalential are essentially finitely presentable. This result does not extend to binary non-indexed products of arbitrary finitely presentable logics, as shown by a counterexample. Finitely presentable logics are then exploited to introduce finitely presentable Leibniz classes, and to draw a parallel between the Leibniz (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Algebraizable logics and a functorial encoding of its morphisms.Darllan Conceição Pinto & Hugo Luiz Mariano - 2017 - Logic Journal of the IGPL 25 (4):524-561.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Semi-intuitionistic Logic with Strong Negation.Juan Manuel Cornejo & Ignacio Viglizzo - 2018 - Studia Logica 106 (2):281-293.
    Motivated by the definition of semi-Nelson algebras, a propositional calculus called semi-intuitionistic logic with strong negation is introduced and proved to be complete with respect to that class of algebras. An axiomatic extension is proved to have as algebraic semantics the class of Nelson algebras.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Almost structural completeness; an algebraic approach.Wojciech Dzik & Michał M. Stronkowski - 2016 - Annals of Pure and Applied Logic 167 (7):525-556.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A New View of Effects in a Hilbert Space.Roberto Giuntini, Antonio Ledda & Francesco Paoli - 2016 - Studia Logica 104 (6):1145-1177.
    We investigate certain Brouwer-Zadeh lattices that serve as abstract counterparts of lattices of effects in Hilbert spaces under the spectral ordering. These algebras, called PBZ*-lattices, can also be seen as generalisations of orthomodular lattices and are remarkable for the collapse of three notions of “sharpness” that are distinct in general Brouwer-Zadeh lattices. We investigate the structure theory of PBZ*-lattices and their reducts; in particular, we prove some embedding results for PBZ*-lattices and provide an initial description of the lattice of PBZ*-varieties.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Logical discrimination (2nd edition).Lloyd Humberstone - 2005 - In Jean-Yves Béziau (ed.), Logica Universalis: Towards a General Theory of Logic. Boston: Birkhäuser Verlog. pp. 225–246.
    We discuss conditions under which the following ‘truism’ does indeed express a truth: the weaker a logic is in terms of what it proves, the stronger it is as a tool for registering distinctions amongst the formulas in its language.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Logical Friendliness and Sympathy in Logic.David C. Makinson - 2005 - In Jean-Yves Béziau (ed.), Logica Universalis: Towards a General Theory of Logic. Boston: Birkhäuser Verlog. pp. 191--205.
    Defines and examines a notion of logical friendliness, a broadening of the familiar notion of classical consequence. Also reviews familiar notions and operations with which friendliness makes contact, providing a new light in which they may be seen.
    Download  
     
    Export citation  
     
    Bookmark  
  • The simplest protoalgebraic logic.Josep Maria Font - 2013 - Mathematical Logic Quarterly 59 (6):435-451.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A finite model property for RMImin.Ai-ni Hsieh & James G. Raftery - 2006 - Mathematical Logic Quarterly 52 (6):602-612.
    It is proved that the variety of relevant disjunction lattices has the finite embeddability property. It follows that Avron's relevance logic RMImin has a strong form of the finite model property, so it has a solvable deducibility problem. This strengthens Avron's result that RMImin is decidable.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On an axiomatic system for the logic of linearly ordered BCI-matrices.San-min Wang & Dao-Wu Pei - 2012 - Archive for Mathematical Logic 51 (3-4):285-297.
    The logic FBCI given by linearly ordered BCI-matrices is known not to be an axiomatic extension of the well-known BCI logic. In this paper we axiomatize FBCI by adding a recursively enumerable set of schemes of inference rules to BCI and show that there is no finite axiomatization for FBCI.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Leo Esakia on Duality in Modal and Intuitionistic Logics.Guram Bezhanishvili (ed.) - 2014 - Dordrecht, Netherland: Springer.
    This volume is dedicated to Leo Esakia's contributions to the theory of modal and intuitionistic systems. Consisting of 10 chapters, written by leading experts, this volume discusses Esakia’s original contributions and consequent developments that have helped to shape duality theory for modal and intuitionistic logics and to utilize it to obtain some major results in the area. Beginning with a chapter which explores Esakia duality for S4-algebras, the volume goes on to explore Esakia duality for Heyting algebras and its generalizations (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Physics is Organized Around Transformations Connecting Contextures in a Polycontextural World.Johannes Falk, Edwin Eichler, Katja Windt & Marc-Thorsten Hütt - 2022 - Foundations of Science 27 (3):1229-1251.
    The rich body of physical theories defines the foundation of our understanding of the world. Its mathematical formulation is based on classical Aristotelian logic. In the philosophy of science the ambiguities, paradoxes, and the possibility of subjective interpretations of facts have challenged binary logic, leading, among other developments, to Gotthard Günther’s theory of polycontexturality. Günther’s theory explains how observers with subjective perception can become aware of their own subjectivity and provides means to describe contradicting or even paradox observations in a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Abstract Approach to Consequence Relations.Petr Cintula, José Gil-férez, Tommaso Moraschini & Francesco Paoli - 2019 - Review of Symbolic Logic 12 (2):331-371.
    We generalise the Blok–Jónsson account of structural consequence relations, later developed by Galatos, Tsinakis and other authors, in such a way as to naturally accommodate multiset consequence. While Blok and Jónsson admit, in place of sheer formulas, a wider range of syntactic units to be manipulated in deductions (including sequents or equations), these objects are invariablyaggregatedvia set-theoretical union. Our approach is more general in that nonidempotent forms of premiss and conclusion aggregation, including multiset sum and fuzzy set union, are considered. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Taking Degrees of Truth Seriously.Josep Maria Font - 2009 - Studia Logica 91 (3):383-406.
    This is a contribution to the discussion on the role of truth degrees in manyvalued logics from the perspective of abstract algebraic logic. It starts with some thoughts on the so-called Suszko’s Thesis (that every logic is two-valued) and on the conception of semantics that underlies it, which includes the truth-preserving notion of consequence. The alternative usage of truth values in order to define logics that preserve degrees of truth is presented and discussed. Some recent works studying these in the (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Behavioral Algebraization of Logics.Carlos Caleiro, Ricardo Gonçalves & Manuel Martins - 2009 - Studia Logica 91 (1):63-111.
    We introduce and study a new approach to the theory of abstract algebraic logic (AAL) that explores the use of many-sorted behavioral logic in the role traditionally played by unsorted equational logic. Our aim is to extend the range of applicability of AAL toward providing a meaningful algebraic counterpart also to logics with a many-sorted language, and possibly including non-truth-functional connectives. The proposed behavioral approach covers logics which are not algebraizable according to the standard approach, while also bringing a new (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Beth Property in Algebraic Logic.W. J. Blok & Eva Hoogland - 2006 - Studia Logica 83 (1-3):49-90.
    The present paper is a study in abstract algebraic logic. We investigate the correspondence between the metalogical Beth property and the algebraic property of surjectivity of epimorphisms. It will be shown that this correspondence holds for the large class of equivalential logics. We apply our characterization theorem to relevance logics and many-valued logics.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • On the Closure Properties of the Class of Full G-models of a Deductive System.Josep Maria Font, Ramon Jansana & Don Pigozzi - 2006 - Studia Logica 83 (1-3):215-278.
    In this paper we consider the structure of the class FGModS of full generalized models of a deductive system S from a universal-algebraic point of view, and the structure of the set of all the full generalized models of S on a fixed algebra A from the lattice-theoretical point of view; this set is represented by the lattice FACSs A of all algebraic closed-set systems C on A such that (A, C) ε FGModS. We relate some properties of these structures (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Selfextensional Logics with a Conjunction.Ramon Jansana - 2006 - Studia Logica 84 (1):63-104.
    A logic is selfextensional if its interderivability (or mutual consequence) relation is a congruence relation on the algebra of formulas. In the paper we characterize the selfextensional logics with a conjunction as the logics that can be defined using the semilattice order induced by the interpretation of the conjunction in the algebras of their algebraic counterpart. Using the charactrization we provide simpler proofs of several results on selfextensional logics with a conjunction obtained in [13] using Gentzen systems. We also obtain (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Implicational logics II: additional connectives and characterizations of semilinearity.Petr Cintula & Carles Noguera - 2016 - Archive for Mathematical Logic 55 (3-4):353-372.
    This is the continuation of the paper :417–446, 2010). We continue the abstract study of non-classical logics based on the kind of generalized implication connectives they possess and we focus on semilinear logics, i.e. those that are complete with respect to the class of models where the implication defines a linear order. We obtain general characterizations of semilinearity in terms of the intersection-prime extension property, the syntactical semilinearity metarule and the class of finitely subdirectly irreducible models. Moreover, we consider extensions (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A Note on Natural Extensions in Abstract Algebraic Logic.Petr Cintula & Carles Noguera - 2015 - Studia Logica 103 (4):815-823.
    Transfer theorems are central results in abstract algebraic logic that allow to generalize properties of the lattice of theories of a logic to any algebraic model and its lattice of filters. Their proofs sometimes require the existence of a natural extension of the logic to a bigger set of variables. Constructions of such extensions have been proposed in particular settings in the literature. In this paper we show that these constructions need not always work and propose a wider setting in (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Weakly Implicative (Fuzzy) Logics I: Basic Properties. [REVIEW]Petr Cintula - 2006 - Archive for Mathematical Logic 45 (6):673-704.
    This paper presents two classes of propositional logics (understood as a consequence relation). First we generalize the well-known class of implicative logics of Rasiowa and introduce the class of weakly implicative logics. This class is broad enough to contain many “usual” logics, yet easily manageable with nice logical properties. Then we introduce its subclass–the class of weakly implicative fuzzy logics. It contains the majority of logics studied in the literature under the name fuzzy logic. We present many general theorems for (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Representations of structural closure operators.José Gil-Férez - 2011 - Archive for Mathematical Logic 50 (1-2):45-73.
    We continue the work of Blok and Jónsson by developing the theory of structural closure operators and introducing the notion of a representation between them. Similarities and equivalences of Blok-Jónsson turn out to be bijective representations and bijective structural representations, respectively. We obtain a characterization for representations induced by a transformer. In order to obtain a similar characterization for structural representations we introduce the notions of a graduation and a graded variable of an M-set. We show that several deductive systems, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Proof by Cases Property and its Variants in Structural Consequence Relations.Petr Cintula & Carles Noguera - 2013 - Studia Logica 101 (4):713-747.
    This paper is a contribution to the study of the rôle of disjunction inAlgebraic Logic. Several kinds of (generalized) disjunctions, usually defined using a suitable variant of the proof by cases property, were introduced and extensively studied in the literature mainly in the context of finitary logics. The goals of this paper are to extend these results to all logics, to systematize the multitude of notions of disjunction (both those already considered in the literature and those introduced in this paper), (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Contextual Deduction Theorems.J. G. Raftery - 2011 - Studia Logica 99 (1-3):279-319.
    Logics that do not have a deduction-detachment theorem (briefly, a DDT) may still possess a contextual DDT —a syntactic notion introduced here for arbitrary deductive systems, along with a local variant. Substructural logics without sentential constants are natural witnesses to these phenomena. In the presence of a contextual DDT, we can still upgrade many weak completeness results to strong ones, e.g., the finite model property implies the strong finite model property. It turns out that a finitary system has a contextual (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Constructible models of orthomodular quantum logics.Piotr Wilczek - unknown
    We continue in this article the abstract algebraic treatment of quantum sentential logics Wil. The Notions borrowed from the field of Model Theory and Abstract Algebraic Logic - AAL (i.e., consequence relation, variety, logical matrix, deductive filter, reduced product, ultraproduct, ultrapower, Frege relation, Leibniz congruence, Suszko congruence, Leibniz operator) are applied to quantum logics. We also proved several equivalences between state property systems (Jauch-Piron-Aerts line of investigations) and AAL treatment of quantum logics (corollary 18 and 19). We show that there (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Model-theoretic investigations into consequence operation (cn) in quantum logics: An algebraic approach.Piotr Wilczek - unknown
    In this paper, we present the fundamentals of the so-called algebraic approach to propositional quantum logics. We define the set of formulae describing quantum reality as a free algebra freely generated by the set of quantum proportional variables. We define the general notion of logic as a structural consequence operation. Next, we introduce the concept of logical matrices understood as a model of quantum logics.We give the definitions of two quantum consequence operations defined in these models.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Complete additivity and modal incompleteness.Wesley H. Holliday & Tadeusz Litak - 2019 - Review of Symbolic Logic 12 (3):487-535.
    In this article, we tell a story about incompleteness in modal logic. The story weaves together an article of van Benthem, “Syntactic aspects of modal incompleteness theorems,” and a longstanding open question: whether every normal modal logic can be characterized by a class of completely additive modal algebras, or as we call them, ${\cal V}$-baos. Using a first-order reformulation of the property of complete additivity, we prove that the modal logic that starred in van Benthem’s article resolves the open question (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Is there a neutral metalanguage?Rea Golan - 2019 - Synthese 198 (Suppl 20):4831-4858.
    Logical pluralists are committed to the idea of a neutral metalanguage, which serves as a framework for debates in logic. Two versions of this neutrality can be found in the literature: an agreed upon collection of inferences, and a metalanguage that is neutral as such. I discuss both versions and show that they are not immune to Quinean criticism, which builds on the notion of meaning. In particular, I show that the first version of neutrality is sub-optimal, and hard to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Beyond Rasiowa's Algebraic Approach to Non-classical Logics.Josep Maria Font - 2006 - Studia Logica 82 (2):179-209.
    This paper reviews the impact of Rasiowa's well-known book on the evolution of algebraic logic during the last thirty or forty years. It starts with some comments on the importance and influence of this book, highlighting some of the reasons for this influence, and some of its key points, mathematically speaking, concerning the general theory of algebraic logic, a theory nowadays called Abstract Algebraic Logic. Then, a consideration of the diverse ways in which these key points can be generalized allows (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Inconsistency lemmas in algebraic logic.James G. Raftery - 2013 - Mathematical Logic Quarterly 59 (6):393-406.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Implicational (semilinear) logics I: a new hierarchy. [REVIEW]Petr Cintula & Carles Noguera - 2010 - Archive for Mathematical Logic 49 (4):417-446.
    In abstract algebraic logic, the general study of propositional non-classical logics has been traditionally based on the abstraction of the Lindenbaum-Tarski process. In this process one considers the Leibniz relation of indiscernible formulae. Such approach has resulted in a classification of logics partly based on generalizations of equivalence connectives: the Leibniz hierarchy. This paper performs an analogous abstract study of non-classical logics based on the kind of generalized implication connectives they possess. It yields a new classification of logics expanding Leibniz (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Relation Formulas for Protoalgebraic Equality Free Quasivarieties; Pałasińska’s Theorem Revisited.Anvar M. Nurakunov & Michał M. Stronkowski - 2013 - Studia Logica 101 (4):827-847.
    We provide a new proof of the following Pałasińska's theorem: Every finitely generated protoalgebraic relation distributive equality free quasivariety is finitely axiomatizable. The main tool we use are ${\mathcal{Q}}$ Q -relation formulas for a protoalgebraic equality free quasivariety ${\mathcal{Q}}$ Q . They are the counterparts of the congruence formulas used for describing the generation of congruences in algebras. Having this tool in hand, we prove a finite axiomatization theorem for ${\mathcal{Q}}$ Q when it has definable principal ${\mathcal{Q}}$ Q -subrelations. This (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An Infinite Family of Finite-Valued Paraconsistent Algebraizable Logics.Hugo Albuquerque & Carlos Caleiro - forthcoming - Studia Logica:1-28.
    We present a new infinite family of finite-valued paraconsistent logics—whose _n_-th member we call _Sette’s logic of order_ _n_ and denote by \({\mathscr {S}}_n\) —all of which extending da Costa’s logic \({\mathscr {C}}_1\) and extended by classical logic \(\mathcal {C\!\hspace{0.0pt}L}\). We classify the family \(\{ {\mathscr {S}}_n: n \ge 2 \}\) within the Leibniz hierarchy by proving that all its members are finitely algebraizable. We also prove a completeness theorem for each logic \({\mathscr {S}}_n\) wrt. a single logical matrix and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Algebraic logic for the negation fragment of classical logic.Luciano J. González - forthcoming - Logic Journal of the IGPL.
    The general aim of this article is to study the negation fragment of classical logic within the framework of contemporary (Abstract) Algebraic Logic. More precisely, we shall find the three classes of algebras that are canonically associated with a logic in Algebraic Logic, i.e. we find the classes |$\textrm{Alg}^*$|⁠, |$\textrm{Alg}$| and the intrinsic variety of the negation fragment of classical logic. In order to achieve this, firstly, we propose a Hilbert-style axiomatization for this fragment. Then, we characterize the reduced matrix (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Lógica, ordem e sistemas implicativos.Cristiane Alexandra Lázaro, Hércules de Araujo Feitosa & Marcelo Reicher Soares - 2019 - Veritas – Revista de Filosofia da Pucrs 64 (3):e32214.
    Neste artigo, tratamos de três tópicos básicos para o entendimento de uma noção de razão, a saber, relação de consequência, relação de ordem e sistema formal. A partir de uma caracterização de sistema formal, definimos as duas relações mencionadas. Destacamos uma inter-relação entre consequência e ordem. Então, apresentamos outros sistemas formais que consideram especificamente um conceito de implicação, dado pelas álgebras implicativas e pela lógica implicativa. Esta lógica implicativa, que tem como modelo as álgebras implicativas, apresenta apenas um operador, o (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)An alternative proof of the Hilbert-style axiomatization for the $$\{\wedge,\vee \}$$ { ∧, ∨ } -fragment of classical propositional logic.Luciano J. González - 2022 - Archive for Mathematical Logic 61 (5):859-865.
    Dyrda and Prucnal gave a Hilbert-style axiomatization for the \-fragment of classical propositional logic. Their proof of completeness follows a different approach to the standard one proving the completeness of classical propositional logic. In this note, we present an alternative proof of Dyrda and Prucnal’s result following the standard arguments which prove the completeness of classical propositional logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Supervenience, Dependence, Disjunction.Lloyd Humberstone - forthcoming - Logic and Logical Philosophy:1.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A New Hierarchy of Infinitary Logics in Abstract Algebraic Logic.Carles Noguera & Tomáš Lávička - 2017 - Studia Logica 105 (3):521-551.
    In this article we investigate infinitary propositional logics from the perspective of their completeness properties in abstract algebraic logic. It is well-known that every finitary logic is complete with respect to its relatively subdirectly irreducible models. We identify two syntactical notions formulated in terms of intersection-prime theories that follow from finitarity and are sufficient conditions for the aforementioned completeness properties. We construct all the necessary counterexamples to show that all these properties define pairwise different classes of logics. Consequently, we obtain (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Admissible Rules and the Leibniz Hierarchy.James G. Raftery - 2016 - Notre Dame Journal of Formal Logic 57 (4):569-606.
    This paper provides a semantic analysis of admissible rules and associated completeness conditions for arbitrary deductive systems, using the framework of abstract algebraic logic. Algebraizability is not assumed, so the meaning and significance of the principal notions vary with the level of the Leibniz hierarchy at which they are presented. As a case study of the resulting theory, the nonalgebraizable fragments of relevance logic are considered.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Categorical Abstract Algebraic Logic: Truth-Equational $pi$-Institutions.George Voutsadakis - 2015 - Notre Dame Journal of Formal Logic 56 (2):351-378.
    Finitely algebraizable deductive systems were introduced by Blok and Pigozzi to capture the essential properties of those deductive systems that are very tightly connected to quasivarieties of universal algebras. They include the equivalential logics of Czelakowski. Based on Blok and Pigozzi’s work, Herrmann defined algebraizable deductive systems. These are the equivalential deductive systems that are also truth-equational, in the sense that the truth predicate of the class of their reduced matrix models is explicitly definable by some set of unary equations. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Update to “A Survey of Abstract Algebraic Logic”.Josep Maria Font, Ramon Jansana & Don Pigozzi - 2009 - Studia Logica 91 (1):125-130.
    A definition and some inaccurate cross-references in the paper A Survey of Abstract Algebraic Logic, which might confuse some readers, are clarified and corrected; a short discussion of the main one is included. We also update a dozen of bibliographic references.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The semantic isomorphism theorem in abstract algebraic logic.Tommaso Moraschini - 2016 - Annals of Pure and Applied Logic 167 (12):1298-1331.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Conserving involution in residuated structures.Ai-ni Hsieh & James G. Raftery - 2007 - Mathematical Logic Quarterly 53 (6):583-609.
    This paper establishes several algebraic embedding theorems, each of which asserts that a certain kind of residuated structure can be embedded into a richer one. In almost all cases, the original structure has a compatible involution, which must be preserved by the embedding. The results, in conjunction with previous findings, yield separative axiomatizations of the deducibility relations of various substructural formal systems having double negation and contraposition axioms. The separation theorems go somewhat further than earlier ones in the literature, which (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Categorical Abstract Algebraic Logic: Models of π-Institutions.George Voutsadakis - 2005 - Notre Dame Journal of Formal Logic 46 (4):439-460.
    An important part of the theory of algebraizable sentential logics consists of studying the algebraic semantics of these logics. As developed by Czelakowski, Blok, and Pigozzi and Font and Jansana, among others, it includes studying the properties of logical matrices serving as models of deductive systems and the properties of abstract logics serving as models of sentential logics. The present paper contributes to the development of the categorical theory by abstracting some of these model theoretic aspects and results from the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Categorical Abstract Algebraic Logic: More on Protoalgebraicity.George Voutsadakis - 2006 - Notre Dame Journal of Formal Logic 47 (4):487-514.
    Protoalgebraic logics are characterized by the monotonicity of the Leibniz operator on their theory lattices and are at the lower end of the Leibniz hierarchy of abstract algebraic logic. They have been shown to be the most primitive among those logics with a strong enough algebraic character to be amenable to algebraic study techniques. Protoalgebraic π-institutions were introduced recently as an analog of protoalgebraic sentential logics with the goal of extending the Leibniz hierarchy from the sentential framework to the π-institution (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Wansing's bi-intuitionistic logic: semantics, extension and unilateralisation.Juan C. Agudelo-Agudelo - 2024 - Journal of Applied Non-Classical Logics 34 (1):31-54.
    The well-known algebraic semantics and topological semantics for intuitionistic logic (Int) is here extended to Wansing's bi-intuitionistic logic (2Int). The logic 2Int is also characterised by a quasi-twist structure semantics, which leads to an alternative topological characterisation of 2Int. Later, notions of Fregean negation and of unilateralisation are proposed. The logic 2Int is extended with a ‘Fregean negation’ connective ∼, obtaining 2Int∼, and it is showed that the logic N4⋆ (an extension of Nelson's paraconsistent logic) results to be the unilateralisation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Behavioral algebraization of da Costa's C-systems.Carlos Caleiro & Ricardo Gonçalves - 2009 - Journal of Applied Non-Classical Logics 19 (2):127-148.
    It is well-known that da Costa's C-systems of paraconsistent logic do not admit a Blok-Pigozzi algebraization. Still, an algebraic flavored semantics for them has been proposed in the literature, namely using the class of so-called da Costa algebras. However, the precise connection between these semantic structures and the C-systems was never established at the light of the theory of algebraizable logics. In this paper we propose to study the C-systems from an algebraic point of view, and to fill in this (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations