Switch to: References

Add citations

You must login to add citations.
  1. Cofinality of the laver ideal.Miroslav Repický - 2016 - Archive for Mathematical Logic 55 (7-8):1025-1036.
    Yurii Khomskii observed that cof>c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{cof}}}>\mathfrak {c}$$\end{document} assuming b=c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {b}=\mathfrak {c}$$\end{document} and he asked whether the inequality cof>c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{cof}}}>\mathfrak {c}$$\end{document} is provable in ZFC. We find several conditions that imply some variants of this inequality for tree ideals. Applying a recent result of Brendle, Khomskii, and Wohofsky we show that l0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Strongly unbounded and strongly dominating sets of reals generalized.Michal Dečo - 2015 - Archive for Mathematical Logic 54 (7-8):825-838.
    We generalize the notions of strongly dominating and strongly unbounded subset of the Baire space. We compare the corresponding ideals and tree ideals, in particular we present a condition which implies that some of those ideals are distinct. We also introduce DUI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{DU}_\mathcal{I}}$$\end{document}-property, where I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{I}}$$\end{document} is an ideal on cardinal κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document}, to capture these two (...)
    Download  
     
    Export citation  
     
    Bookmark