Switch to: Citations

Add references

You must login to add references.
  1. Sacks forcing, Laver forcing, and Martin's axiom.Haim Judah, Arnold W. Miller & Saharon Shelah - 1992 - Archive for Mathematical Logic 31 (3):145-161.
    In this paper we study the question assuming MA+⌝CH does Sacks forcing or Laver forcing collapse cardinals? We show that this question is equivalent to the question of what is the additivity of Marczewski's ideals 0. We give a proof that it is consistent that Sacks forcing collapses cardinals. On the other hand we show that Laver forcing does not collapse cardinals.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Set Theory: On the Structure of the Real Line.T. Bartoszyński & H. Judah - 1999 - Studia Logica 62 (3):444-445.
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • Regularity properties for dominating projective sets.Jörg Brendle, Greg Hjorth & Otmar Spinas - 1995 - Annals of Pure and Applied Logic 72 (3):291-307.
    We show that every dominating analytic set in the Baire space has a dominating closed subset. This improves a theorem of Spinas [15] saying that every dominating analytic set contains the branches of a uniform tree, i.e. a superperfect tree with the property that for every splitnode all the successor splitnodes have the same length. In [15], a subset of the Baire space is called u-regular if either it is not dominating or it contains the branches of a uniform tree, (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Dominating projective sets in the Baire space.Otmar Spinas - 1994 - Annals of Pure and Applied Logic 68 (3):327-342.
    We show that every analytic set in the Baire space which is dominating contains the branches of a uniform tree, i.e. a superperfect tree with the property that for every splitnode all the successor splitnodes have the same length. We call this property of analytic sets u-regularity. However, we show that the concept of uniform tree does not suffice to characterize dominating analytic sets in general. We construct a dominating closed set with the property that for no uniform tree whose (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Isolating cardinal invariants.Jindřich Zapletal - 2003 - Journal of Mathematical Logic 3 (1):143-162.
    There is an optimal way of increasing certain cardinal invariants of the continuum.
    Download  
     
    Export citation  
     
    Bookmark   7 citations