Switch to: References

Citations of:

Completeness and the Ends of Axiomatization

In Juliette Kennedy (ed.), Interpreting Gödel: Critical Essays. Cambridge: Cambridge University Press. pp. 59-77 (2014)

Add citations

You must login to add citations.
  1. Rules and Meaning in Quantum Mechanics.Iulian D. Toader - manuscript
    This book concerns the metasemantics of quantum mechanics (QM). Roughly, it pursues an investigation at an intersection of the philosophy of physics and the philosophy of language, and it offers a critical analysis of rival explanations of the semantic facts of standard QM. Two problems for such explanations are discussed: categoricity and permanence. New results include 1) a reconstruction of Einstein's incompleteness argument, which concludes that a local, separable, and categorical QM cannot exist, 2) a reinterpretation of Bohr's principle of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Axioms and Postulates as Speech Acts.João Vitor Schmidt & Giorgio Venturi - 2024 - Erkenntnis 89 (8):3183-3202.
    We analyze axioms and postulates as speech acts. After a brief historical appraisal of the concept of axiom in Euclid, Frege, and Hilbert, we evaluate contemporary axiomatics from a linguistic perspective. Our reading is inspired by Hilbert and is meant to account for the assertive, directive, and declarative components of modern axiomatics. We will do this by describing the constitutive and regulative roles that axioms possess with respect to the linguistic practice of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Einstein Completeness as Categoricity.Iulian D. Toader - 2023 - Foundations of Physics 53 (2):1-15.
    This paper provides an algebraic reconstruction of Einstein’s argument for the incompleteness of quantum mechanics, in order to clarify the assumptions that underlie an understanding of Einstein completeness as categoricity.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Axiomatizing Changing Conceptions of the Geometric Continuum I: Euclid-Hilbert†.John T. Baldwin - 2018 - Philosophia Mathematica 26 (3):346-374.
    We give a general account of the goals of axiomatization, introducing a variant on Detlefsen’s notion of ‘complete descriptive axiomatization’. We describe how distinctions between the Greek and modern view of number, magnitude, and proportion impact the interpretation of Hilbert’s axiomatization of geometry. We argue, as did Hilbert, that Euclid’s propositions concerning polygons, area, and similar triangles are derivable from Hilbert’s first-order axioms. We argue that Hilbert’s axioms including continuity show much more than the geometrical propositions of Euclid’s theorems and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Kurt gödel.Juliette Kennedy - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Axioms in Mathematical Practice.Dirk Schlimm - 2013 - Philosophia Mathematica 21 (1):37-92.
    On the basis of a wide range of historical examples various features of axioms are discussed in relation to their use in mathematical practice. A very general framework for this discussion is provided, and it is argued that axioms can play many roles in mathematics and that viewing them as self-evident truths does not do justice to the ways in which mathematicians employ axioms. Possible origins of axioms and criteria for choosing axioms are also examined. The distinctions introduced aim at (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • The Dividing Line Methodology: Model Theory Motivating Set Theory.John T. Baldwin - 2021 - Theoria 87 (2):361-393.
    We explore Shelah's model‐theoretic dividing line methodology. In particular, we discuss how problems in model theory motivated new techniques in model theory, for example classifying theories by their potential (consistently with Zermelo–Fraenkel set theory with the axiom of choice (ZFC)) spectrum of cardinals in which there is a universal model. Two other examples are the study (with Malliaris) of the Keisler order leading to a new ZFC result on cardinal invariants and attempts to clarify the “main gap” by reducing the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Completeness and categoricity (in power): Formalization without foundationalism.John T. Baldwin - 2014 - Bulletin of Symbolic Logic 20 (1):39-79.
    We propose a criterion to regard a property of a theory (in first or second order logic) as virtuous: the property must have significant mathematical consequences for the theory (or its models). We then rehearse results of Ajtai, Marek, Magidor, H. Friedman and Solovay to argue that for second order logic, ‘categoricity’ has little virtue. For first order logic, categoricity is trivial; but ‘categoricity in power’ has enormous structural consequences for any of the theories satisfying it. The stability hierarchy extends (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations