Switch to: References

Add citations

You must login to add citations.
  1. Chasing Individuation: Mathematical Description of Physical Systems.Zalamea Federico - 2016 - Dissertation, Paris Diderot University
    This work is a conceptual analysis of certain recent developments in the mathematical foundations of Classical and Quantum Mechanics which have allowed to formulate both theories in a common language. From the algebraic point of view, the set of observables of a physical system, be it classical or quantum, is described by a Jordan-Lie algebra. From the geometric point of view, the space of states of any system is described by a uniform Poisson space with transition probability. Both these structures (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophy as Total Axiomatics: Serious Metaphysics, Scrutability Bases, and Aesthetic Evaluation.Uriah Kriegel - 2016 - Journal of the American Philosophical Association 2 (2):272-290.
    What is the aim of philosophy? There may be too many philosophical branches, traditions, practices, and programs to admit of a single overarching aim. Here I focus on a fairly traditional philosophical project that has recently received increasingly sophisticated articulation, especially by Frank Jackson (1998) and David Chalmers (2012). In §1, I present the project and suggest that it is usefully thought of as ‘total axiomatics’: the project of attempting to axiomatize the total theory of the world. In §2, I (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Dedekind's Abstract Concepts: Models and Mappings.Wilfried Sieg & Dirk Schlimm - 2014 - Philosophia Mathematica (3):nku021.
    Dedekind's mathematical work is integral to the transformation of mathematics in the nineteenth century and crucial for the emergence of structuralist mathematics in the twentieth century. We investigate the essential components of what Emmy Noether called, his ‘axiomatic standpoint’: abstract concepts, models, and mappings.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Non-deductive methods in mathematics.Alan Baker - 2010 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The Dividing Line Methodology: Model Theory Motivating Set Theory.John T. Baldwin - 2021 - Theoria 87 (2):361-393.
    We explore Shelah's model‐theoretic dividing line methodology. In particular, we discuss how problems in model theory motivated new techniques in model theory, for example classifying theories by their potential (consistently with Zermelo–Fraenkel set theory with the axiom of choice (ZFC)) spectrum of cardinals in which there is a universal model. Two other examples are the study (with Malliaris) of the Keisler order leading to a new ZFC result on cardinal invariants and attempts to clarify the “main gap” by reducing the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Philosophy of mathematical practice: A primer for mathematics educators.Yacin Hamami & Rebecca Morris - 2020 - ZDM Mathematics Education 52:1113–1126.
    In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice . In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics including the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • What are Implicit Definitions?Eduardo N. Giovannini & Georg Schiemer - 2019 - Erkenntnis 86 (6):1661-1691.
    The paper surveys different notions of implicit definition. In particular, we offer an examination of a kind of definition commonly used in formal axiomatics, which in general terms is understood as providing a definition of the primitive terminology of an axiomatic theory. We argue that such “structural definitions” can be semantically understood in two different ways, namely as specifications of the meaning of the primitive terms of a theory and as definitions of higher-order mathematical concepts or structures. We analyze these (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Reliability of mathematical inference.Jeremy Avigad - 2020 - Synthese 198 (8):7377-7399.
    Of all the demands that mathematics imposes on its practitioners, one of the most fundamental is that proofs ought to be correct. It has been common since the turn of the twentieth century to take correctness to be underwritten by the existence of formal derivations in a suitable axiomatic foundation, but then it is hard to see how this normative standard can be met, given the differences between informal proofs and formal derivations, and given the inherent fragility and complexity of (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Extended mathematical cognition: external representations with non-derived content.Karina Vold & Dirk Schlimm - 2020 - Synthese 197 (9):3757-3777.
    Vehicle externalism maintains that the vehicles of our mental representations can be located outside of the head, that is, they need not be instantiated by neurons located inside the brain of the cogniser. But some disagree, insisting that ‘non-derived’, or ‘original’, content is the mark of the cognitive and that only biologically instantiated representational vehicles can have non-derived content, while the contents of all extra-neural representational vehicles are derived and thus lie outside the scope of the cognitive. In this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Mathematical Abstraction, Conceptual Variation and Identity.Jean-Pierre Marquis - 2014 - In Peter Schroeder-Heister, Gerhard Heinzmann, Wilfred Hodges & Pierre Edouard Bour (eds.), Logic, Methodology and Philosophy of Science, Proceedings of the 14th International Congress. London, UK: pp. 299-322.
    One of the key features of modern mathematics is the adoption of the abstract method. Our goal in this paper is to propose an explication of that method that is rooted in the history of the subject.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Lakatosian and Euclidean populations: a pluralist approach to conceptual change in mathematics.Matteo De Benedetto - 2023 - European Journal for Philosophy of Science 13 (3):1-25.
    Lakatos’ (Lakatos, 1976) model of mathematical conceptual change has been criticized for neglecting the diversity of dynamics exhibited by mathematical concepts. In this work, I will propose a pluralist approach to mathematical change that re-conceptualizes Lakatos’ model of proofs and refutations as an ideal dynamic that mathematical concepts can exhibit to different degrees with respect to multiple dimensions. Drawing inspiration from Godfrey-Smith’s (Godfrey-Smith, 2009) population-based Darwinism, my proposal will be structured around the notion of a conceptual population, the opposition between (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Axioms and Postulates as Speech Acts.João Vitor Schmidt & Giorgio Venturi - 2024 - Erkenntnis 89 (8):3183-3202.
    We analyze axioms and postulates as speech acts. After a brief historical appraisal of the concept of axiom in Euclid, Frege, and Hilbert, we evaluate contemporary axiomatics from a linguistic perspective. Our reading is inspired by Hilbert and is meant to account for the assertive, directive, and declarative components of modern axiomatics. We will do this by describing the constitutive and regulative roles that axioms possess with respect to the linguistic practice of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Fuzzy-set representation and processing of fuzzy images: non-linguistic vagueness as representation, approximation and scientific practice.Jordi Cat - 2015 - Archives for the Philosophy and History of Soft Computing 2015 (1).
    This is the first part of a two-part paper in which I conclude the process, initiated elsewhere, of tracking objective conditions of vagueness of representation from language to pictures, from philosophy to imaging science, from vagueness to approximation, from representation to reasoning, with a focus on the application of fuzzy set theory and its challenges.
    Download  
     
    Export citation  
     
    Bookmark  
  • Frameworks, models, and case studies: a new methodology for studying conceptual change in science and philosophy.Matteo De Benedetto - 2022 - Dissertation, Ludwig Maximilians Universität, München
    This thesis focuses on models of conceptual change in science and philosophy. In particular, I developed a new bootstrapping methodology for studying conceptual change, centered around the formalization of several popular models of conceptual change and the collective assessment of their improved formal versions via nine evaluative dimensions. Among the models of conceptual change treated in the thesis are Carnap’s explication, Lakatos’ concept-stretching, Toulmin’s conceptual populations, Waismann’s open texture, Mark Wilson’s patches and facades, Sneed’s structuralism, and Paul Thagard’s conceptual revolutions. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Procedural Character of Hilbert’s Axiomatic Method.Giambattista Formica - 2019 - Quaestio 19:459-482.
    Hilbert’s methodological reflection has certainly shaped a new image of the axiomatic method. However, the discussion on the procedural character of the method is still open, with commentators subs...
    Download  
     
    Export citation  
     
    Bookmark  
  • The Abridgement Paradox.Roy Sorensen - 2019 - Australasian Journal of Philosophy 97 (3):572-588.
    When axiomatizing a body of truths, one first concentrates on obtaining a set of axioms that entail all and only those truths. The theorist expects that this complete system will have some...
    Download  
     
    Export citation  
     
    Bookmark  
  • The development of Euclidean axiomatics: The systems of principles and the foundations of mathematics in editions of the Elements in the Early Modern Age.Vincenzo De Risi - 2016 - Archive for History of Exact Sciences 70 (6):591-676.
    The paper lists several editions of Euclid’s Elements in the Early Modern Age, giving for each of them the axioms and postulates employed to ground elementary mathematics.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Why the Axiom of Choice Sometimes Fails.Ivonne Victoria Pallares-Vega - 2020 - Logic Journal of the IGPL 28 (6):1207-1217.
    The early controversies surrounding the axiom of choice are well known, as are the many results that followed concerning its dependence from, and equivalence to, other mathematical propositions. This paper focuses not on the logical status of the axiom but rather on showing why it fails in certain categories.
    Download  
     
    Export citation  
     
    Bookmark  
  • Las imágenes y la lógica del cono de luz: rastreando el giro postulacional de Robb en la física geométrica.Jordi Cat - 2016 - Revista de Humanidades de Valparaíso 8:43-105.
    Previous discussions of Robb’s work on space and time have offered a philosophical focus on causal interpretations of relativity theory or a historical focus on his use of non-Euclidean geometry, or else ignored altogether in discussions of relativity at Cambridge. In this paper I focus on how Robb’s work made contact with those same foundational developments in mathematics and with their applications. This contact with applications of new mathematical logic at Göttingen and Cambridge explains the transition from his electron research (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Pasch's empiricism as methodological structuralism.Dirk Schlimm - 2020 - In Erich H. Reck & Georg Schiemer (eds.), The Pre-History of Mathematical Structuralism. Oxford: Oxford University Press. pp. 80-105.
    Download  
     
    Export citation  
     
    Bookmark   1 citation