Switch to: References

Add citations

You must login to add citations.
  1. Social Construction in the Philosophy of Mathematics: A Critical Evaluation of Julian Cole’s Theory†: Articles.J. M. Dieterle - 2010 - Philosophia Mathematica 18 (3):311-328.
    Julian Cole argues that mathematical domains are the products of social construction. This view has an initial appeal in that it seems to salvage much that is good about traditional platonistic realism without taking on the ontological baggage. However, it also has problems. After a brief sketch of social constructivist theories and Cole’s philosophy of mathematics, I evaluate the arguments in favor of social constructivism. I also discuss two substantial problems with the theory. I argue that unless and until social (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The parallel structure of mathematical reasoning.Andrew Aberdein - 2012 - In Alison Pease & Brendan Larvor (eds.), Proceedings of the Symposium on Mathematical Practice and Cognition Ii: A Symposium at the Aisb/Iacap World Congress 2012. Society for the Study of Artificial Intelligence and the Simulation of Behaviour. pp. 7--14.
    This paper proposes an account of mathematical reasoning as parallel in structure: the arguments which mathematicians use to persuade each other of their results comprise the argumentational structure; the inferential structure is composed of derivations which offer a formal counterpart to these arguments. Some conflicts about the foundations of mathematics correspond to disagreements over which steps should be admissible in the inferential structure. Similarly, disagreements over the admissibility of steps in the argumentational structure correspond to different views about mathematical practice. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Pauli–Jung Conjecture and Its Relatives: A Formally Augmented Outline.Harald Atmanspacher - 2020 - Open Philosophy 3 (1):527-549.
    The dual-aspect monist conjecture launched by Pauli and Jung in the mid-20th century will be couched in somewhat formal terms to characterize it more concisely than by verbal description alone. After some background material situating the Pauli–Jung conjecture among other conceptual approaches to the mind–matter problem, the main body of this paper outlines its general framework of a basic psychophysically neutral reality with its derivative mental and physical aspects and the nature of the correlations that connect these aspects. Some related (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations