Switch to: References

Add citations

You must login to add citations.
  1. Buying Logical Principles with Ontological Coin: The Metaphysical Lessons of Adding epsilon to Intuitionistic Logic.David DeVidi & Corey Mulvihill - 2017 - IfCoLog Journal of Logics and Their Applications 4 (2):287-312.
    We discuss the philosophical implications of formal results showing the con- sequences of adding the epsilon operator to intuitionistic predicate logic. These results are related to Diaconescu’s theorem, a result originating in topos theory that, translated to constructive set theory, says that the axiom of choice (an “existence principle”) implies the law of excluded middle (which purports to be a logical principle). As a logical choice principle, epsilon allows us to translate that result to a logical setting, where one can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Epsilon Calculus and Herbrand Complexity.Georg Moser & Richard Zach - 2006 - Studia Logica 82 (1):133-155.
    Hilbert's ε-calculus is based on an extension of the language of predicate logic by a term-forming operator εx. Two fundamental results about the ε-calculus, the first and second epsilon theorem, play a rôle similar to that which the cut-elimination theorem plays in sequent calculus. In particular, Herbrand's Theorem is a consequence of the epsilon theorems. The paper investigates the epsilon theorems and the complexity of the elimination procedure underlying their proof, as well as the length of Herbrand disjunctions of existential (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic.Corey Edward Mulvihill - 2015 - Dissertation, University of Waterloo
    Hilbert’s choice operators τ and ε, when added to intuitionistic logic, strengthen it. In the presence of certain extensionality axioms they produce classical logic, while in the presence of weaker decidability conditions for terms they produce various superintuitionistic intermediate logics. In this thesis, I argue that there are important philosophical lessons to be learned from these results. To make the case, I begin with a historical discussion situating the development of Hilbert’s operators in relation to his evolving program in the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Herbrand complexity and the epsilon calculus with equality.Kenji Miyamoto & Georg Moser - 2023 - Archive for Mathematical Logic 63 (1):89-118.
    The $$\varepsilon $$ -elimination method of Hilbert’s $$\varepsilon $$ -calculus yields the up-to-date most direct algorithm for computing the Herbrand disjunction of an extensional formula. A central advantage is that the upper bound on the Herbrand complexity obtained is independent of the propositional structure of the proof. Prior (modern) work on Hilbert’s $$\varepsilon $$ -calculus focused mainly on the pure calculus, without equality. We clarify that this independence also holds for first-order logic with equality. Further, we provide upper bounds analyses (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Epsilon theorems in intermediate logics.Matthias Baaz & Richard Zach - 2022 - Journal of Symbolic Logic 87 (2):682-720.
    Any intermediate propositional logic can be extended to a calculus with epsilon- and tau-operators and critical formulas. For classical logic, this results in Hilbert’s $\varepsilon $ -calculus. The first and second $\varepsilon $ -theorems for classical logic establish conservativity of the $\varepsilon $ -calculus over its classical base logic. It is well known that the second $\varepsilon $ -theorem fails for the intuitionistic $\varepsilon $ -calculus, as prenexation is impossible. The paper investigates the effect of adding critical $\varepsilon $ - (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Choice principles and constructive logics.David Dedivi - 2004 - Philosophia Mathematica 12 (3):222-243.
    to constructive systems is significant for contemporary metaphysics. However, many are surprised by these results, having learned that the Axiom of Choice (AC) is constructively valid. Indeed, even among specialists there were, until recently, reasons for puzzlement-rival versions of Intuitionistic Type Theory, one where (AC) is valid, another where it implies classical logic. This paper accessibly explains the situation, puts the issues in a broader setting by considering other choice principles, and draws philosophical morals for the understanding of quantification, choice (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations