Abstract
We discuss the philosophical implications of formal results showing the con-
sequences of adding the epsilon operator to intuitionistic predicate logic. These
results are related to Diaconescu’s theorem, a result originating in topos theory
that, translated to constructive set theory, says that the axiom of choice (an
“existence principle”) implies the law of excluded middle (which purports to be
a logical principle). As a logical choice principle, epsilon allows us to translate
that result to a logical setting, where one can get an analogue of Diaconescu’s
result, but also can disentangle the roles of certain other assumptions that are
hidden in mathematical presentations. It is our view that these results have not
received the attention they deserve: logicians are unlikely to read a discussion
because the results considered are “already well known,” while the results are
simultaneously unknown to philosophers who do not specialize in what most
philosophers will regard as esoteric logics. This is a problem, since these results
have important implications for and promise signif i cant illumination of contem-
porary debates in metaphysics. The point of this paper is to make the nature
of the results clear in a way accessible to philosophers who do not specialize in
logic, and in a way that makes clear their implications for contemporary philo-
sophical discussions. To make the latter point, we will focus on Dummettian discussions of realism and anti-realism.
Keywords: epsilon, axiom of choice, metaphysics, intuitionistic logic, Dummett,
realism, antirealism