Switch to: References

Add citations

You must login to add citations.
  1. Different Levels of the Meaning of Wave-Particle Duality and a Suspensive Perspective on the Interpretation of Quantum Theory.Yong Wook Cheong & Jinwoong Song - 2014 - Science & Education 23 (5):1011-1030.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Some Trends in the Philosophy of Physics.Henrik Zinkernagel - 2011 - Theoria 26 (2):215-241.
    A short review of some recent developments in the philosophy of physics is presented. I focus on themes which illustrate relations and points of common interest between philosophy of physics and three of its `neighboring' elds: Physics, metaphysics and general philosophy of science. The main examples discussed in these three `border areas' are decoherence and the interpretation of quantum mechanics; time in physics and metaphysics; and methodological issues surrounding the multiverse idea in modern cosmology.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Niels Bohr on the wave function and the classical/quantum divide.Henrik Zinkernagel - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:9-19.
    It is well known that Niels Bohr insisted on the necessity of classical concepts in the account of quantum phenomena. But there is little consensus concerning his reasons, and what he exactly meant by this. In this paper, I re-examine Bohr’s interpretation of quantum mechanics, and argue that the necessity of the classical can be seen as part of his response to the measurement problem. More generally, I attempt to clarify Bohr’s view on the classical/quantum divide, arguing that the relation (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Reconsidering the Relation Between “Matter Wave Interference” and “Wave–Particle Duality”.Lukas Mairhofer & Oliver Passon - 2022 - Foundations of Physics 52 (2):1-15.
    Interference of more and more massive objects provides a spectacular confirmation of quantum theory. It is usually regarded as support for “wave–particle duality” and in an extension of this duality even as support for “complementarity”. We first give an outline of the historical development of these notions. Already here it becomes evident that they are hard to define rigorously, i.e. have mainly a heuristic function. Then we discuss recent interference experiments of large and complex molecules which seem to support this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Awkward Symmetry: The Tension between Particle Ontologies and Permutation Invariance.Benjamin Jantzen - 2011 - Philosophy of Science 78 (1):39-59.
    Physical theories continue to be interpreted in terms of particles. The idea of a particle required modification with the advent of quantum theory, but remains central to scientific explanation. Particle ontologies also have the virtue of explaining basic epistemic features of the world, and so remain appealing for the scientific realist. However, particle ontologies are untenable when coupled with the empirically necessary postulate of permutation invariance—the claim that permuting the roles of particles in a representation of a physical state results (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On Uffink's criticism of protective measurements.Shan Gao - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (4):513-518.
    Protective measurement is a new measuring method introduced by Aharonov, Vaidman, and Anandan, with the aim of measuring the expectation value of an observable on a single quantum system, even if the system is initially not in an eigenstate of the measured observable. According to these authors, this feature of protective measurements favors a realistic interpretation of the wave function. These claims were challenged by Uffink. He argued that only observables that commute with the system's Hamiltonian can be protectively measured, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Uncomfortable bedfellows: Objective quantum Bayesianism and the von Neumann–Lüders projection postulate.Armond Duwell - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (3):167-175.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Reconstruction and Reinvention in Quantum Theory.Michael Dickson - 2015 - Foundations of Physics 45 (10):1330-1340.
    I consider the fact that there are a number of interesting ways to ‘reconstruct’ quantum theory, and suggest that, very broadly speaking, a form of ‘instrumentalism’ makes good sense of the situation. This view runs against some common wisdom, which dismisses instrumentalism as ‘cheap’. In contrast, I consider how an instrumentalist might think about the reconstruction theorems, and, having made a distinction between ‘reconstructing’ quantum theory and ‘reinventing’ quantum theory, I suggest that there is an adequate instrumentalist approach to the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Is measurement a Black box? On the importance of understanding measurement even in quantum information and computation.Michael Dickson - 2007 - Philosophy of Science 74 (5):1019–1032.
    It has been argued, partly from the lack of any widely accepted solution to the measurement problem, and partly from recent results from quantum information theory, that measurement in quantum theory is best treated as a black box. However, there is a crucial difference between ‘having no account of measurement' and ‘having no solution to the measurement problem'. We know a lot about measurements. Taking into account this knowledge sheds light on quantum theory as a theory of information and computation. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford University Press. pp. 115-142.
    Entropy is ubiquitous in physics, and it plays important roles in numerous other disciplines ranging from logic and statistics to biology and economics. However, a closer look reveals a complicated picture: entropy is defined differently in different contexts, and even within the same domain different notions of entropy are at work. Some of these are defined in terms of probabilities, others are not. The aim of this chapter is to arrive at an understanding of some of the most important notions (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • El principio de equivalencia en gravedad cuántica.Elias Okon - 2013 - Metatheoria – Revista de Filosofía E Historia de la Ciencia 3:65--80.
    Download  
     
    Export citation  
     
    Bookmark  
  • ¿Es posible definir una flecha cuántica del tiempo mediante la hipótesis del colapso?Cristian López & Sebastian Fortin - 2019 - Metatheoria – Revista de Filosofía E Historia de la Ciencia 9:69--82.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Prolegomenon to the Ontology of the Everett Interpretation.David Wallace - unknown
    In this article, I briefly explain the quantum measurement problem and the Everett interpretation, in a way that is faithful to modern physics and yet accessible to readers without any physics training. I then consider the metaphysical lessons for ontology from quantum mechanics under the Everett interpretation. My conclusions are largely negative: I argue that very little can be said in full generality about the ontology of quantum mechanics, because quantum mechanics, like abstract classical mechanics, is a framework within which (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Between classical and quantum.Nicolaas P. Landsman - 2007 - Handbook of the Philosophy of Science 2:417--553.
    The relationship between classical and quantum theory is of central importance to the philosophy of physics, and any interpretation of quantum mechanics has to clarify it. Our discussion of this relationship is partly historical and conceptual, but mostly technical and mathematically rigorous, including over 500 references. For example, we sketch how certain intuitive ideas of the founders of quantum theory have fared in the light of current mathematical knowledge. One such idea that has certainly stood the test of time is (...)
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • Does chance hide necessity ? A reevaluation of the debate ‘determinism - indeterminism’ in the light of quantum mechanics and probability theory.Louis Vervoort - 2013 - Dissertation, University of Montreal
    In this text the ancient philosophical question of determinism (“Does every event have a cause ?”) will be re-examined. In the philosophy of science and physics communities the orthodox position states that the physical world is indeterministic: quantum events would have no causes but happen by irreducible chance. Arguably the clearest theorem that leads to this conclusion is Bell’s theorem. The commonly accepted ‘solution’ to the theorem is ‘indeterminism’, in agreement with the Copenhagen interpretation. Here it is recalled that indeterminism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Chasing Individuation: Mathematical Description of Physical Systems.Zalamea Federico - 2016 - Dissertation, Paris Diderot University
    This work is a conceptual analysis of certain recent developments in the mathematical foundations of Classical and Quantum Mechanics which have allowed to formulate both theories in a common language. From the algebraic point of view, the set of observables of a physical system, be it classical or quantum, is described by a Jordan-Lie algebra. From the geometric point of view, the space of states of any system is described by a uniform Poisson space with transition probability. Both these structures (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • ψ-Epistemic Models, Einsteinian Intuitions, and No-Gos. A Critical Study of Recent Developments on the Quantum State.Florian J. Boge - 2016 - PhilSci-Archive.
    Quantum mechanics notoriously faces the measurement problem, the problem that if read thoroughly, it implies the nonexistence of definite outcomes in measurement procedures. A plausible reaction to this and to related problems is to regard a system's quantum state |ψ> merely as an indication of our lack of knowledge about the system, i.e., to interpret it epistemically. However, there are radically different ways to spell out such an epistemic view of the quantum state. We here investigate recent developments in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Macroscopic observables and the born rule. I. long run frequencies.Nicolaas P. Landsman - unknown
    We clarify the role of the Born rule in the Copenhagen Interpretation of quantum mechanics by deriving it from Bohr's doctrine of classical concepts, translated into the following mathematical statement: a quantum system described by a noncommutative C*-algebra of observables is empirically accessible only through associated commutative C*-algebras. The Born probabilities emerge as the relative frequencies of outcomes in long runs of measurements on a quantum system; it is not necessary to adopt the frequency interpretation of single-case probabilities (which will (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On Uffink's alternative interpretation of protective measurements.Shan Gao - unknown
    Protective measurement is a new measuring method introduced by Aharonov, Anandan and Vaidman. By a protective measurement, one can measure the expectation value of an observable on a single quantum system, even if the system is initially not in an eigenstate of the measured observable. This remarkable feature of protective measurements was challenged by Uffink. He argued that only observables that commute with the system's Hamiltonian can be protectively measured, and a protective measurement of an observable that does not commute (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations