Switch to: References

Add citations

You must login to add citations.
  1. Pincherle's theorem in reverse mathematics and computability theory.Dag Normann & Sam Sanders - 2020 - Annals of Pure and Applied Logic 171 (5):102788.
    We study the logical and computational properties of basic theorems of uncountable mathematics, in particular Pincherle's theorem, published in 1882. This theorem states that a locally bounded function is bounded on certain domains, i.e. one of the first ‘local-to-global’ principles. It is well-known that such principles in analysis are intimately connected to (open-cover) compactness, but we nonetheless exhibit fundamental differences between compactness and Pincherle's theorem. For instance, the main question of Reverse Mathematics, namely which set existence axioms are necessary to (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On Robust Theorems Due to Bolzano, Weierstrass, Jordan, and Cantor.Dag Normann & Sam Sanders - 2024 - Journal of Symbolic Logic 89 (3):1077-1127.
    Reverse Mathematics (RM hereafter) is a program in the foundations of mathematics where the aim is to identify the minimal axioms needed to prove a given theorem from ordinary, i.e., non-set theoretic, mathematics. This program has unveiled surprising regularities: the minimal axioms are very often equivalent to the theorem over the base theory, a weak system of ‘computable mathematics’, while most theorems are either provable in this base theory, or equivalent to one of only four logical systems. The latter plus (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Interrelation between weak fragments of double negation shift and related principles.Makoto Fujiwara & Ulrich Kohlenbach - 2018 - Journal of Symbolic Logic 83 (3):991-1012.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On the strength of marriage theorems and uniformity.Makoto Fujiwara, Kojiro Higuchi & Takayuki Kihara - 2014 - Mathematical Logic Quarterly 60 (3):136-153.
    Kierstead showed that every computable marriage problem has a computable matching under the assumption of computable expanding Hall condition and computable local finiteness for boys and girls. The strength of the marriage theorem reaches or if computable expanding Hall condition or computable local finiteness for girls is weakened. In contrast, the provability of the marriage theorem is maintained in even if local finiteness for boys is completely removed. Using these conditions, we classify the strength of variants of marriage theorems in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Classical provability of uniform versions and intuitionistic provability.Makoto Fujiwara & Ulrich Kohlenbach - 2015 - Mathematical Logic Quarterly 61 (3):132-150.
    Along the line of Hirst‐Mummert and Dorais, we analyze the relationship between the classical provability of uniform versions Uni(S) of Π2‐statements S with respect to higher order reverse mathematics and the intuitionistic provability of S. Our main theorem states that (in particular) for every Π2‐statement S of some syntactical form, if its uniform version derives the uniform variant of over a classical system of arithmetic in all finite types with weak extensionality, then S is not provable in strong semi‐intuitionistic systems (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Weihrauch reducibility and intuitionistic reverse mathematics.Rutger Kuyper - 2017 - Journal of Symbolic Logic 82 (4):1438-1458.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The characterization of Weihrauch reducibility in systems containing.Patrick Uftring - 2021 - Journal of Symbolic Logic 86 (1):224-261.
    We characterize Weihrauch reducibility in $ \operatorname {\mathrm {E-PA^{\omega }}} + \operatorname {\mathrm {QF-AC^{0,0}}}$ and all systems containing it by the provability in a linear variant of the same calculus using modifications of Gödel’s Dialectica interpretation that incorporate ideas from linear logic, nonstandard arithmetic, higher-order computability, and phase semantics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Using Ramsey’s theorem once.Jeffry L. Hirst & Carl Mummert - 2019 - Archive for Mathematical Logic 58 (7-8):857-866.
    We show that \\) cannot be proved with one typical application of \\) in an intuitionistic extension of \ to higher types, but that this does not remain true when the law of the excluded middle is added. The argument uses Kohlenbach’s axiomatization of higher order reverse mathematics, results related to modified reducibility, and a formalization of Weihrauch reducibility.
    Download  
     
    Export citation  
     
    Bookmark   2 citations