Switch to: References

Add citations

You must login to add citations.
  1. Relational Quantum Mechanics, quantum relativism, and the iteration of relativity.Timotheus Riedel - 2024 - Studies in History and Philosophy of Science Part A 104 (C):109-118.
    The idea that the dynamical properties of quantum systems are invariably relative to other systems has recently regained currency. Using Relational Quantum Mechanics (RQM) for a case study, this paper calls attention to a question that has been underappreciated in the debate about quantum relativism: the question of whether relativity iterates. Are there absolute facts about the properties one system possesses relative to a specified reference, or is this again a relative matter, and so on? It is argued that RQM (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Realism and instrumentalism about the wave function. How should we choose?Mauro Dorato & Federico Laudisa - 2014 - In Shao Gan (ed.), Protective Measurements and Quantum Reality: Toward a New Understanding of Quantum Mechanics. Cambridge University Press.
    The main claim of the paper is that one can be ‘realist’ (in some sense) about quantum mechanics without requiring any form of realism about the wave function. We begin by discussing various forms of realism about the wave function, namely Albert’s configuration-space realism, Dürr Zanghi and Goldstein’s nomological realism about Ψ, Esfeld’s dispositional reading of Ψ Pusey Barrett and Rudolph’s realism about the quantum state. By discussing the articulation of these four positions, and their interrelation, we conclude that instrumentalism (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Can We Make Sense of Relational Quantum Mechanics?Quentin Ruyant - 2018 - Foundations of Physics 48 (4):440-455.
    The relational interpretation of quantum mechanics proposes to solve the measurement problem and reconcile completeness and locality of quantum mechanics by postulating relativity to the observer for events and facts, instead of an absolute “view from nowhere”. The aim of this paper is to clarify this interpretation, and in particular, one of its central claims concerning the possibility for an observer to have knowledge about other observer’s events. I consider three possible readings of this claim, and develop the most promising (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • What Ontology for Relational Quantum Mechanics?Mauro Dorato & Matteo Morganti - 2022 - Foundations of Physics 52 (3):1-19.
    In this paper, we evaluate some proposals that have been put forward to clarify the ontological consequences of relational quantum mechanics. We first focus on priority monism and ontic structural realism and argue that these views are not suitable for providing an ontological interpretation of the theory. Then, we discuss an alternative interpretation that we regard as more promising, based on so-called ‘metaphysical coherentism’, which we also connect to the idea of an event-based, or ‘flash’, ontology.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Note on Rovelli’s ‘Why Gauge?’.Nicholas J. Teh - 2015 - European Journal for Philosophy of Science 5 (3):339-348.
    Rovelli’s “Why Gauge?” offers a parable to show that gauge-dependent quantities have a modal and relational physical significance. We subject the morals of this parable to philosophical scrutiny and argue that, while Rovelli’s main point stands, there are important disanalogies between his parable and Yang-Mills type gauge theory.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Information, Reality, and Modern Physics.Emmanuel Saridakis - 2016 - International Studies in the Philosophy of Science 30 (4):327-341.
    Since special relativity and quantum mechanics, information has become a central concept in our description and understanding of physical reality. This statement may be construed in different ways, depending on the meaning we attach to the concept of information, and on our ontological commitments. One distinction is between mind-independent ‘Shannon information’ and a traditional conception of information, connected with meaning and knowledge. Another, orthogonal, distinction is between information considered as a fundamental physical entity, and an ontological agnosticism where physics is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Argument Against the Realistic Interpretation of the Wave Function.Carlo Rovelli - 2016 - Foundations of Physics 46 (10):1229-1237.
    Testable predictions of quantum mechanics are invariant under time reversal. But the evolution of the quantum state in time is not so, neither in the collapse nor in the no-collapse interpretations of the theory. This is a fact that challenges any realistic interpretation of the quantum state. On the other hand, this fact raises no difficulty if we interpret the quantum state as a mere calculation device, bookkeeping past real quantum events.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • On the Classification Between $$psi$$ ψ -Ontic and $$psi$$ ψ -Epistemic Ontological Models.Andrea Oldofredi & Cristian López - 2020 - Foundations of Physics 50 (11):1315-1345.
    Harrigan and Spekkens provided a categorization of quantum ontological models classifying them as \-ontic or \-epistemic if the quantum state \ describes respectively either a physical reality or mere observers’ knowledge. Moreover, they claimed that Einstein—who was a supporter of the statistical interpretation of quantum mechanics—endorsed an epistemic view of \ In this essay we critically assess such a classification and some of its consequences by proposing a twofold argumentation. Firstly, we show that Harrigan and Spekkens’ categorization implicitly assumes that (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Can There be a Process Without Time? Processualism Within Timeless Physics.Emilia Margoni - 2022 - Foundations of Physics 52 (2):1-19.
    Process ontology is making deep inroads into the hard sciences. For it offers a workable understanding of dynamic phenomena which sits well with inquiries that problematize the traditional conception of self-standing, definite, independent objects as the basic stuff of the universe. Process-based approaches are claimed by their advocates to yield better ontological descriptions of various domains of physical reality in which dynamical, indefinite activities are prior to definite “things” or “states of things”. However, if applied to physics, a main problem (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • How Different Interpretations of Quantum Mechanics can Enrich Each Other: The Case of the Relational Quantum Mechanics and the Modal-Hamiltonian Interpretation.Olimpia Lombardi & Juan Sebastián Ardenghi - 2022 - Foundations of Physics 52 (3):1-21.
    In the literature on the interpretation of quantum mechanics, not many works attempt to adopt a proactive perspective aimed at seeing how different interpretations can enrich each other through a productive dialogue. In particular, few proposals have been devised to show that different approaches can be clarified by comparing them, and can even complement each other, improving or leading to a more fertile overall approach. The purpose of this paper is framed within this perspective of complementation and mutual enrichment. In (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Open Problems in Relational Quantum Mechanics.Federico Laudisa - 2019 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 50 (2):215-230.
    The Rovelli relational interpretation of quantum mechanics is based on the assumption that the notion of observer-independent state of a physical system is to be rejected. In RQM the primary target of the theory is the analysis of the whole network of relations that may be established among quantum subsystems, and the shift to a relational perspective is supposed to address in a satisfactory way the general problem of the interpretation of quantum mechanics. Here I discuss two basic issues, that (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Barad, Bohr, and quantum mechanics.Jan Faye & Rasmus Jaksland - 2021 - Synthese 199:8231-8255.
    The last decade has seen an increasing number of references to quantum mechanics in the humanities and social sciences. This development has in particular been driven by Karen Barad’s agential realism: a theoretical framework that, based on Niels Bohr’s interpretation of quantum mechanics, aims to inform social theorizing. In dealing with notions such as agency, power, and embodiment as well as the relation between the material and the discursive level, the influence of agential realism in fields such as feminist science (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Laws of nature and the reality of the wave function.Mauro Dorato - 2015 - Synthese 192 (10):3179-3201.
    In this paper I review three different positions on the wave function, namely: nomological realism, dispositionalism, and configuration space realism by regarding as essential their capacity to account for the world of our experience. I conclude that the first two positions are committed to regard the wave function as an abstract entity. The third position will be shown to be a merely speculative attempt to derive a primitive ontology from a reified mathematical space. Without entering any discussion about nominalism, I (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Events and the Ontology of Quantum Mechanics.Mauro Dorato - 2015 - Topoi 34 (2):369-378.
    In the first part of the paper I argue that an ontology of events is precise, flexible and general enough so as to cover the three main alternative formulations of quantum mechanics as well as theories advocating an antirealistic view of the wave function. Since these formulations advocate a primitive ontology of entities living in four-dimensional spacetime, they are good candidates to connect that quantum image with the manifest image of the world. However, to the extent that some form of (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • The Metaphysical Challenge of Loop Quantum Gravity.Martin Calamari - 2021 - Studies in History and Philosophy of Science Part A 86 (C):68-83.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Quantum relational indeterminacy.Claudio Calosi & Cristian Mariani - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 71 (C):158-169.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • what ontology for relational quantum mechanics?Mauro Dorato & Matteo Morganti - 2022
    In this paper, we evaluate some proposals that can be advanced to clarify the ontological consequences of Relational Quantum Mechanics. We first focus on priority monism and ontic structural realism and argue that these views are not suitable for providing an ontological interpretation of the theory. Then, we discuss an alternative interpretation that we regard as more promising, based on so-called ‘metaphysical coherentism’, which we also connect to the idea of an event-based, or ‘flash’, ontology.
    Download  
     
    Export citation  
     
    Bookmark   1 citation