Switch to: References

Add citations

You must login to add citations.
  1. A multivector derivative approach to Lagrangian field theory.Anthony Lasenby, Chris Doran & Stephen Gull - 1993 - Foundations of Physics 23 (10):1295-1327.
    A new calculus, based upon the multivector derivative, is developed for Lagrangian mechanics and field theory, providing streamlined and rigorous derivations of the Euler-Lagrange equations. A more general form of Noether's theorem is found which is appropriate to both discrete and continuous symmetries. This is used to find the conjugate currents of the Dirac theory, where it improves on techniques previously used for analyses of local observables. General formulas for the canonical stress-energy and angular-momentum tensors are derived, with spinors and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Electron paths, tunnelling, and diffraction in the spacetime algebra.Stephen Gull, Anthony Lasenby & Chris Doran - 1993 - Foundations of Physics 23 (10):1329-1356.
    This paper employs the ideas of geometric algebra to investigate the physical content of Dirac's electron theory. The basis is Hestenes' discovery of the geometric significance of the Dirac spinor, which now represents a Lorentz transformation in spacetime. This transformation specifies a definite velocity, which might be interpreted as that of a real electron. Taken literally, this velocity yields predictions of tunnelling times through potential barriers, and defines streamlines in spacetime that would correspond to electron paths. We also present a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Imaginary numbers are not real—The geometric algebra of spacetime.Stephen Gull, Anthony Lasenby & Chris Doran - 1993 - Foundations of Physics 23 (9):1175-1201.
    This paper contains a tutorial introduction to the ideas of geometric algebra, concentrating on its physical applications. We show how the definition of a “geometric product” of vectors in 2-and 3-dimensional space provides precise geometrical interpretations of the imaginary numbers often used in conventional methods. Reflections and rotations are analyzed in terms of bilinear spinor transformations, and are then related to the theory of analytic functions and their natural extension in more than two dimensions (monogenics), Physics is greatly facilitated by (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Direct product and decomposition of certain physically important algebras.Robert W. Johnson - 1996 - Foundations of Physics 26 (2):197-222.
    I consider the direct product algebra formed from two isomorphic Clifford algebras. More specifically, for an element x in each of the two component algebras I consider elements in the direct product space with the form x ⊗ x. I show how this construction can be used to model the algebraic structure of particular vector spaces with metric, to describe the relationship between wavefunction and observable in examples from quantum mechanics, and to express the relationship between the electromagnetic field tensor (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Einstein addition law for nonparallel boosts using the geometric algebra of space-time.B. Tom King - 1995 - Foundations of Physics 25 (12):1741-1755.
    The modern use of algebra to describe geometric ideas is discussed with particular reference to the constructions of Grassmann and Hamilton and the subsequent algebras due to Clifford. An Einstein addition law for nonparallel boosts is shown to follow naturally from the use of the representation-independent form of the geometric algebra of space-time.
    Download  
     
    Export citation  
     
    Bookmark