Switch to: References

Add citations

You must login to add citations.
  1. Quantification and RM.J. Michael Dunn - 1976 - Studia Logica 35 (3):315 - 322.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A Generalized Proof-Theoretic Approach to Logical Argumentation Based on Hypersequents.AnneMarie Borg, Christian Straßer & Ofer Arieli - 2020 - Studia Logica 109 (1):167-238.
    In this paper we introduce hypersequent-based frameworks for the modelling of defeasible reasoning by means of logic-based argumentation and the induced entailment relations. These structures are an extension of sequent-based argumentation frameworks, in which arguments and the attack relations among them are expressed not only by Gentzen-style sequents, but by more general expressions, called hypersequents. This generalization allows us to overcome some of the known weaknesses of logical argumentation frameworks and to prove several desirable properties of the entailments that are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantified Propositional Gödel Logics.Matthias Baaz, Agata Ciabattoni & Richard Zach - 2000 - In Voronkov Andrei & Parigot Michel (eds.), Logic for Programming and Automated Reasoning. 7th International Conference, LPAR 2000. Springer. pp. 240-256.
    It is shown that Gqp↑, the quantified propositional Gödel logic based on the truth-value set V↑ = {1 - 1/n : n≥1}∪{1}, is decidable. This result is obtained by reduction to Büchi's theory S1S. An alternative proof based on elimination of quantifiers is also given, which yields both an axiomatization and a characterization of Gqp↑ as the intersection of all finite-valued quantified propositional Gödel logics.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Constructive Validity of a Generalized Kreisel–Putnam Rule.Ivo Pezlar - forthcoming - Studia Logica.
    In this paper, we propose a computational interpretation of the generalized Kreisel–Putnam rule, also known as the generalized Harrop rule or simply the Split rule, in the style of BHK semantics. We will achieve this by exploiting the Curry–Howard correspondence between formulas and types. First, we inspect the inferential behavior of the Split rule in the setting of a natural deduction system for intuitionistic propositional logic. This will guide our process of formulating an appropriate program that would capture the corresponding (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • First-order Nilpotent minimum logics: first steps.Matteo Bianchi - 2013 - Archive for Mathematical Logic 52 (3-4):295-316.
    Inspired by the work done by Baaz et al. (Ann Pure Appl Log 147(1–2): 23–47, 2007; Lecture Notes in Computer Science, vol 4790/2007, pp 77–91, 2007) for first-order Gödel logics, we investigate Nilpotent Minimum logic NM. We study decidability and reciprocal inclusion of various sets of first-order tautologies of some subalgebras of the standard Nilpotent Minimum algebra, establishing also a connection between the validity in an NM-chain of certain first-order formulas and its order type. Furthermore, we analyze axiomatizability, undecidability and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Fragments of R-Mingle.W. J. Blok & J. G. Raftery - 2004 - Studia Logica 78 (1-2):59-106.
    The logic RM and its basic fragments (always with implication) are considered here as entire consequence relations, rather than as sets of theorems. A new observation made here is that the disjunction of RM is definable in terms of its other positive propositional connectives, unlike that of R. The basic fragments of RM therefore fall naturally into two classes, according to whether disjunction is or is not definable. In the equivalent quasivariety semantics of these fragments, which consist of subreducts of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • In memoriam: J. Michael Dunn, 1941–2021.Katalin Bimbó - 2021 - Bulletin of Symbolic Logic 27 (4):519-525.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Semantic Hierarchy for Intuitionistic Logic.Guram Bezhanishvili & Wesley H. Holliday - 2019 - Indagationes Mathematicae 30 (3):403-469.
    Brouwer's views on the foundations of mathematics have inspired the study of intuitionistic logic, including the study of the intuitionistic propositional calculus and its extensions. The theory of these systems has become an independent branch of logic with connections to lattice theory, topology, modal logic and other areas. This paper aims to present a modern account of semantics for intuitionistic propositional systems. The guiding idea is that of a hierarchy of semantics, organized by increasing generality: from the least general Kripke (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A Kripke-style semantics for R-Mingle using a binary accessibility relation.J. Michael Dunn - 1976 - Studia Logica 35 (2):163 - 172.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Two pretabular linear extensions of relevance logic R.Asadollah Fallahi - 2021 - Journal of Applied Non-Classical Logics 31 (2):154-179.
    Pretabularity is the attribute of logics that are not characterised by finite matrices, but all of whose proper extensions are. Two of the first-known pretabular logics were Dummett’s famous super-...
    Download  
     
    Export citation  
     
    Bookmark  
  • Matrix approach in methodology of sentential calculi.Ryszard Wójcicki - 1973 - Studia Logica 32 (1):7 - 39.
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • On Pretabular Extensions of Relevance Logic.Asadollah Fallahi & James Gordon Raftery - 2024 - Studia Logica 112 (5):967-985.
    We exhibit infinitely many semisimple varieties of semilinear De Morgan monoids (and likewise relevant algebras) that are not tabular, but which have only tabular proper subvarieties. Thus, the extension of relevance logic by the axiom \((p\rightarrow q)\vee (q\rightarrow p)\) has infinitely many pretabular axiomatic extensions, regardless of the presence or absence of Ackermann constants.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Pretabular Classical Relevance Logic.Lisa Galminas & John G. Mersch - 2012 - Studia Logica 100 (6):1211-1221.
    In this paper we construct an extension, ℒ, of Anderson and Belnap's relevance logic R that is classical in the sense that it contains p&p → q as a theorem, and we prove that ℒ is pretabular in the sense that while it does not have a finite characteristic matrix, every proper normal extension of it does. We end the paper by commenting on the possibility of finding other classical relevance logics that are also pretabular.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Trakhtenbrot Theorem and First-Order Axiomatic Extensions of MTL.Matteo Bianchi & Franco Montagna - 2015 - Studia Logica 103 (6):1163-1181.
    In 1950, B.A. Trakhtenbrot showed that the set of first-order tautologies associated to finite models is not recursively enumerable. In 1999, P. Hájek generalized this result to the first-order versions of Łukasiewicz, Gödel and Product logics, w.r.t. their standard algebras. In this paper we extend the analysis to the first-order versions of axiomatic extensions of MTL. Our main result is the following. Let \ be a class of MTL-chains. Then the set of all first-order tautologies associated to the finite models (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Aggregation and idempotence.Lloyd Humberstone - 2013 - Review of Symbolic Logic 6 (4):680-708.
    A 1-ary sentential context is aggregative (according to a consequence relation) if the result of putting the conjunction of two formulas into the context is a consequence (by that relation) of the results of putting first the one formula and then the other into that context. All 1-ary contexts are aggregative according to the consequence relation of classical propositional logic (though not, for example, according to the consequence relation of intuitionistic propositional logic), and here we explore the extent of this (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Second Pretabular Classical Relevance Logic.Asadollah Fallahi - 2018 - Studia Logica 106 (1):191-214.
    Pretabular logics are those that lack finite characteristic matrices, although all of their normal proper extensions do have some finite characteristic matrix. Although for Anderson and Belnap’s relevance logic R, there exists an uncountable set of pretabular extensions :1249–1270, 2008), for the classical relevance logic \\rightarrow B\}\) there has been known so far a pretabular extension: \. In Section 1 of this paper, we introduce some history of pretabularity and some relevance logics and their algebras. In Section 2, we introduce (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations